A awesome mathematics exponents problem | Olympiad Question | can you solve this problem

Поділитися
Вставка
  • Опубліковано 5 лис 2024

КОМЕНТАРІ •

  • @AfsarSaid-f8s
    @AfsarSaid-f8s 9 днів тому

    Good question

  • @NaeemKhan-n7j
    @NaeemKhan-n7j 9 днів тому

    ❤❤❤❤

  • @MuhammadAwais-uf7cg
    @MuhammadAwais-uf7cg 7 днів тому

    ❤❤❤

  • @michaeldoerr5810
    @michaeldoerr5810 9 днів тому

    The answer is 7 and I shall use that for practice!!!

  • @ManojkantSamal
    @ManojkantSamal 9 днів тому

    ^=read as to the power
    *=read as square root
    As per question
    a^(1/6)={a^(1/3)+1}/18
    {a^(1/3) +1}/{a^(1/6)} =18
    {a^(1/3)/a^(1/6)}+{1/a^(1/6)}=18
    [a^{(1/3)-(1/6)}]+{1/a^(1/6)}=18
    a^(1/6)+{1/a^(1/6)=18
    Squaring the equation
    a^(1/3)+{1/a^(1/3)+2=324
    a^(1/3)+{1/a^(1/3)=324-2=322
    {a^(1/9)}^3+{1/a^(1/9)}^3=322
    Let {a^(1/9)}=x
    So,
    X^3+(1/x^3 )=322
    {X+(1/x)}^3 -{3.x. (1/x)}{x^3+(1/x^3)=322
    So,
    {X+(1/x)^3-3{x+(1/x)}=322
    Let {x+(1/x)}=R
    So,
    R^3-3R=322
    R^3-3R-322=0
    Though cubic equation mostly it takes the implimentation of 'Hit &Trial' method to discover it's first root So,
    If R=7, then
    R^3-3R-322=0
    (7)^3-(3×7)-322=343-21-322
    =343-343=0, which satisfies the equation
    So R=7
    R= {x+(1/x)}=[a^(1/9)+{1/a^(1/9)}]
    Hence
    {a^(1/9)}+{1/a^(1/9)}=7

  • @mihaipuiu6231
    @mihaipuiu6231 8 днів тому +1

    Sir,...your solution is very interesting, but I have a question...Where did you learn to write the symbol of the root, so ugly. If you don't write it normally... like millions of people? ...I will never look at your solutions.Capisci?