Handling skewness

Поділитися
Вставка
  • Опубліковано 26 січ 2025

КОМЕНТАРІ • 52

  • @Sallu0123
    @Sallu0123 4 роки тому +2

    Thanks for the videos, where is the descriptive stats videos

    • @sukamal_das
      @sukamal_das  4 роки тому +1

      statquest and khan academy videos are good.

  • @bitanbanerjee2090
    @bitanbanerjee2090 3 роки тому +2

    Wow I was confused about this and you explained it so well!!!! Thank you

  • @teja2683
    @teja2683 2 роки тому +1

    Today I learned so many things from you bro

  • @mamatha1850
    @mamatha1850 2 роки тому

    your video is helpfull.you r saying that highly correlated features with the target.we no need to perform any transformation.will this impact the accuracy of the model.plz reply

  • @pforpython7884
    @pforpython7884 Рік тому

    Could you please share the link for Descriptive Statistics Video?

  • @shama6345
    @shama6345 4 роки тому +1

    How can we remove negative and positive skewness together?

    • @sukamal_das
      @sukamal_das  4 роки тому +1

      Skewness can be either positive or negative, if positive apply square root, logarithm, if negative - apply square, cube or higher powers.

    • @shama6345
      @shama6345 4 роки тому +2

      Plz make video on that

  • @mkeremyucedag
    @mkeremyucedag 4 роки тому +4

    Hello from Turkey! That's great content. I'd like to ask you what if our target (y) is skewed what to do then ? For example let's say I made a car price prediction model and variables are horsepower of car and color of car and car price is skewed in dataset. I did sqrt or log to car price and trained the model, got the mse and did model tuning everything is finished. And now I want to see a 180 hp black car's price. If I insert the values it will give me the sqrt'ed or log'd value right ? So if I do the reverse of log or sqrt will it give me the real car price ? Or should I do other operations ? Thank you...

    • @sukamal_das
      @sukamal_das  4 роки тому +3

      Hello, if the target is skewed, you can apply log or sqrt transformation. Now the predicted value you get is not original price value, it is either sqrt or log of the price. To get the actual price from predicted value, you can apply the inverse function, for eg if transformation is square root, apply square or if transformation is log (base e) apply exponential function i.e np.exp(). I hope that helps, Thank you.

    • @mkeremyucedag
      @mkeremyucedag 4 роки тому

      @@sukamal_das Oh now it's very clear for me. Thank you so much your contents are great.
      Sincerely...

  • @JVJBA
    @JVJBA 2 роки тому

    Hi can you pls share the video for discriptive statistics ?

  • @ketanbutte3497
    @ketanbutte3497 Рік тому

    Hi Sukamal, great explanation. For symboling, can we convert the scale to min-max(0-1) and then apply sqrt?

  • @pranavkhurud6254
    @pranavkhurud6254 Рік тому

    Hello DAS Sir,
    Could you please help me or provide here a descriptive statistics video link.
    Not able to find out.
    Any update

  • @preciousbatta9576
    @preciousbatta9576 3 роки тому +1

    Very helpful.. Thanks
    I also want to ask if we reduce skewness, is there any need to scale the data as well?

    • @sukamal_das
      @sukamal_das  2 роки тому

      Yes scaling is still required.

  • @visvashattri
    @visvashattri 4 роки тому +2

    Thank you.. it was indeed helpful :)

  • @HariMithra-iz7oq
    @HariMithra-iz7oq 8 місяців тому

    Hi. Can you please take me a paid tutorial for a case study of australian vehicle prices from kaggle? Just one session will be enough.

  • @CoopmanGreg
    @CoopmanGreg Рік тому

    😀There was no skewness in the opinion of your watches. They were unanimous in that it was a GREAT video. I definitely agree. Thanks.

  • @alok94singh
    @alok94singh 2 роки тому

    nice explanation sir, keep posted these kind of informative videos

  • @pinkyeeeepinkydas
    @pinkyeeeepinkydas 2 роки тому

    in heat map one feature has 0.002, 2nd has 0.0017.when i am going to skew, getting negative values for 2nd one -0.07723174570350672 where in first 0.2155809290498895. is it correct. why -ve values comming

  • @charmilam920
    @charmilam920 3 роки тому +1

    great video

  • @zohaibramzan6381
    @zohaibramzan6381 3 роки тому

    Why skewness needs to be removed?

  • @RashmiUdupa
    @RashmiUdupa 4 роки тому

    Instead of removing skewness, would removing outliers be enough?

    • @sukamal_das
      @sukamal_das  4 роки тому +2

      Can't say that, but removing outliers will definitely reduce the magnitude of skewness, but no guarantee on totally removing the skewness. Skewness and outliers are 2 different things, A normal distribution with 0 skewness can have outliers on both the extreme ends.

    • @ajaykushwaha-je6mw
      @ajaykushwaha-je6mw 3 роки тому

      removing outliers by trimming is removing records which comes in outlier i.e. you are loosing the data.
      removing outliers with capping is good practice and you can try, it works very well.

  • @AbhishekRana-ye9uw
    @AbhishekRana-ye9uw 4 роки тому +2

    sir how do i find skewness of a list given as price = [14751, 16422, 15398, 9445, 12589, 11687, 10692, 8475, 11184, 9961, 12898, 11905]
    please do reply sir will be very helpful :-)

    • @sukamal_das
      @sukamal_das  4 роки тому +2

      from scipy.stats import skew
      import seaborn as sns
      price = [14751, 16422, 15398, 9445, 12589, 11687, 10692, 8475, 11184, 9961, 12898, 11905]
      # print skewness value
      skew(price)
      # plot distribution
      sns.distplot(price)

    • @AbhishekRana-ye9uw
      @AbhishekRana-ye9uw 4 роки тому +1

      @@sukamal_das thank you sir you are great👍🙏

  • @Rajaraj-kf9kx
    @Rajaraj-kf9kx 2 роки тому

    hello sir how to remove the negative skewness

    • @sukamal_das
      @sukamal_das  2 роки тому

      You can go for square/cube/ higher power transformation

  • @brameeev5768
    @brameeev5768 3 роки тому

    can we use VIF to find the correlation i.e. multi-collinearity?

  • @ajaykushwaha-je6mw
    @ajaykushwaha-je6mw 3 роки тому

    conceptual knowledge is very good, you have earned 1 more subs. There is one just improve your playlist, rest are good.

  • @adamleyon8297
    @adamleyon8297 4 роки тому

    absolutely useful video, thanks for sharing!

  • @AbhishekSingh-og7kf
    @AbhishekSingh-og7kf 3 роки тому

    very useful video, thank you for sharing.

  • @AshishYadav-vi6on
    @AshishYadav-vi6on 2 роки тому

    very well explained!

  • @sayednab
    @sayednab 2 роки тому

    #name sns is not defined. what am i doing wrong here?

    • @sukamal_das
      @sukamal_das  2 роки тому

      You are missing an import statement, add this on the top cell - import seaborn as sns

    • @sayednab
      @sayednab 2 роки тому

      @@sukamal_das yes, I figured it out. thx anyway

  • @michaelogunmakin9143
    @michaelogunmakin9143 7 місяців тому

    subscribed, thank you!

  • @sktdebnath
    @sktdebnath 2 роки тому

    Very very useful.

  • @sheelazaware5494
    @sheelazaware5494 3 роки тому

    Hello I tried this code I got hist but not curveshape on it why ?

    • @sukamal_das
      @sukamal_das  3 роки тому

      Sometimes this might happen due to different versions of matplotlib or seaborn

  • @rohinisn8147
    @rohinisn8147 4 роки тому +1

    Tq sir....🙆‍♂️

  • @NehaYadav-hs1po
    @NehaYadav-hs1po 3 роки тому

    I typed your code but line is not visible on histogram!! whats wrong in my code? #skewness

    • @sukamal_das
      @sukamal_das  3 роки тому +1

      Sometimes this might happen due to different versions of matplotlib or seaborn

    • @NehaYadav-hs1po
      @NehaYadav-hs1po 3 роки тому

      @@sukamal_das whats the solution then?

    • @sukamal_das
      @sukamal_das  3 роки тому +2

      @@NehaYadav-hs1po try upgrading your seaborn version

  • @freeprivatetutor
    @freeprivatetutor Рік тому +1

    ❤ and hug. ❤❤❤❤.