80. Databricks | Pyspark | Tips: Write Dataframe into Single File with Specific File Name

Поділитися
Вставка
  • Опубліковано 1 лис 2024

КОМЕНТАРІ • 29

  • @code_nation
    @code_nation Рік тому +3

    As pandas is slow, we can use this function too, I changed the separator to pipe format but if you want it as comma only then remove the sep from options,
    in path make sure to give file name with format at the end of path: Ex. path = "/mnt/dl2container/folder/file.csv"
    def to_single_file_csv(dataframe, path):
    tmp_path = path.rsplit('/',1)[0]+'/tmpdata'
    dataframe.coalesce(1).write.options(header = "True", sep = "|").csv(tmp_path)
    file = dbutils.fs.ls(tmp_path)[-1][0]
    dbutils.fs.cp(file, path)
    dbutils.fs.rm(tmp_path, True)

  • @lalithroy
    @lalithroy Рік тому +2

    Hi Raja thank you for making videos in your own voice. Could you please make a videos on delta live tables as industry is moving towards it.

  • @sravankumar1767
    @sravankumar1767 Рік тому +1

    Superb explanation Raja

  • @nagulmeerashaik5336
    @nagulmeerashaik5336 Рік тому +1

    Thank🙏... Do more videos this series plssss....

  • @sachinjosethana
    @sachinjosethana Рік тому +2

    great explanation

  • @sabastineade2115
    @sabastineade2115 Рік тому +1

    This was really helpful, can we do the same when saving output into S3 Bucket in AWS?

  • @balajia8376
    @balajia8376 2 місяці тому

    Thanks Raja.. will it work for parquet format?

  • @nestam8669
    @nestam8669 Рік тому +1

    Hi Raja. Will there be any performance degradation while converting from spark df to pandas df?

    • @rajasdataengineering7585
      @rajasdataengineering7585  Рік тому +1

      Yes there is performance difference while applying any transformation in pandas dataframe as it has limitations with data distribution and parallel processing

  • @pankajshende679
    @pankajshende679 9 місяців тому

    Even I created folder before writing data from pandas df, I have getting error cannot save file in non-existent directory. could you please help why getting this error.

  • @brahmendrakumarshukla3136
    @brahmendrakumarshukla3136 Рік тому +1

    Thanks Raja, Could you also help here to dataframe write in .xlsx file

  • @sachinjosethana
    @sachinjosethana Рік тому +2

    Could you share the videos for Delta Live tables

  • @khandoor7228
    @khandoor7228 Рік тому +1

    good job thanks!

  • @pankajjagdale2005
    @pankajjagdale2005 11 місяців тому +1

    how to overwrite this file ?

  • @darnellyork7019
    @darnellyork7019 Рік тому

    ᎮᏒᎧᎷᎧᏕᎷ

  • @kap58627
    @kap58627 Рік тому +1

    Here is solution in spark: from pyspark.sql import SparkSession
    # Create a SparkSession with the required configuration
    spark = SparkSession.builder \
    .appName("SingleFileOutputWithoutSuccessCommittedFiles") \
    .config("spark.sql.sources.commitProtocolClass",
    "org.apache.spark.internal.io.cloud.PathOutputCommitProtocol") \
    .getOrCreate()
    # Read your data into a DataFrame (replace 'your_data' with the appropriate data source)
    df = spark.read.csv("your_data.csv")
    # Perform your transformations on the DataFrame (if needed)
    # Coalesce the DataFrame into a single partition
    # This will ensure that the data is written to a single output file
    df_single_partition = df.coalesce(1)
    # Write the DataFrame to your output location
    # (replace 'output_path' with the desired location)
    df_single_partition.write.csv("output_path", header=True)
    # Stop the SparkSession
    spark.stop()