Physics 12 Moment of Inertia (2 of 7) Moment of Inertia of a Solid Sphere

Поділитися
Вставка
  • Опубліковано 10 лют 2025
  • Visit ilectureonline.com for more math and science lectures!
    In this video I will find the moment of inertia of a solid sphere.
    Next video in the moment of inertia series:
    • Physics 12 Moment of ...

КОМЕНТАРІ • 173

  • @andrei642
    @andrei642 9 років тому +60

    Best youtube physics teacher,by far!!

  • @edwarddi3833
    @edwarddi3833 4 роки тому +2

    you are the first teacher who explained the I of sphere by a 2-D graph.

  • @timguo6858
    @timguo6858 4 роки тому +4

    Man I can't remember this is the how many th time you've saved my life. Thx so much

  • @koober_
    @koober_ 7 років тому +2

    Wow... I know I keep saying this, but your derivations of formulas are amazing. I have a final coming up, and more than knowing how to do problems, I'm even more fascinated by how those equations on my formula sheet got there. My professor kind of skipped over how they were found (which led to me believing that moment of inertia was the same for ANY object), but you clearly demonstrated a way of deriving it that wasn't obvious to me, using techniques I already knew. Once again, thank you so much for doing what you do.

  • @MurasakiBubble
    @MurasakiBubble 6 років тому +4

    WOW! That is some tricky cool math. It all fits like a puzzle and you have to relate one thing to another. Great explanation!

  • @eliudkiptoo596
    @eliudkiptoo596 6 років тому +1

    Best youtube lesson I have taken....many thanks

  • @aryaanantarkar8554
    @aryaanantarkar8554 Рік тому +2

    thank you sir this helped me a lot👍

  • @abhishekkumaranand837
    @abhishekkumaranand837 8 років тому +4

    Sir ur techng skill is pretty good..... Thanks alot!!

  • @tikuasu9015
    @tikuasu9015 3 роки тому +4

    You've helped me so much,
    Thank you🙏

    • @MichelvanBiezen
      @MichelvanBiezen  3 роки тому +2

      Glad to hear it. Thanks for sharing.

    • @frankdimeglio8216
      @frankdimeglio8216 Рік тому

      ​@@MichelvanBiezen Inertia/INERTIAL RESISTANCE is proportional to (or BALANCED with/as) GRAVITATIONAL force/ENERGY, AS ELECTROMAGNETISM/energy is CLEARLY AND NECESSARILY proven to be gravity (ON/IN BALANCE). This CLEARLY explains what is E=MC2 AND F=MA ON BALANCE. What is E=MC2 IS dimensionally consistent. What is GRAVITY IS, ON BALANCE, an INTERACTION that cannot be shielded or blocked. Consider TIME AND time dilation ON BALANCE, as the stars AND PLANETS are POINTS in the night sky. Accordingly, ON BALANCE, the rotation of WHAT IS THE MOON matches the revolution. A given PLANET (including what is THE EARTH) sweeps out equal area in equal TIME, AS ELECTROMAGNETISM/energy is CLEARLY AND NECESSARILY proven to be gravity (ON/IN BALANCE); AS TIME IS NECESSARILY possible/potential AND actual ON/IN BALANCE. Great.
      By Frank Martin DiMeglio

  • @ericjoseph2122
    @ericjoseph2122 7 років тому +2

    You 'r amazing !
    love from India

  • @primeq
    @primeq 9 років тому +1

    very well explained - excellent quality

  • @AjithKumar-eb5lp
    @AjithKumar-eb5lp 4 роки тому +2

    Nice presentation 👍

  • @utkarshnag5437
    @utkarshnag5437 6 років тому +1

    You are great sir love from India

  • @Siege2Sage
    @Siege2Sage 7 років тому +2

    Q1: Where would you know where to slice?
    Q2: How would you know what limits you're setting for the integration?

    • @MichelvanBiezen
      @MichelvanBiezen  7 років тому +3

      Q1: You want your slice such that it is easy to find the moment of inertia of the slice. If you took a vertical slice you would not be able to find the moment of inertia as easily. Q2: Due to symmetry, you can have limits from the center to the top and then double the result to account for the bottom part.

    • @ashutoshkumar3921
      @ashutoshkumar3921 5 років тому +1

      @@MichelvanBiezen sir isnt it easy to do it by hollow sphere by taking limits 0 to
      R

  • @christinaortiz4196
    @christinaortiz4196 9 років тому

    This was literally beautiful.

  • @navneetk64
    @navneetk64 4 роки тому +1

    awesome expln. love u sir

  • @abhiramshastri584
    @abhiramshastri584 Рік тому +1

    thank you sir nice explanation ❤

  • @shashi3806
    @shashi3806 6 років тому +2

    Thank you sir from india.

  • @bluebloo5574
    @bluebloo5574 7 років тому +1

    Thanks you're great teacher .

  • @nahinkabir406
    @nahinkabir406 2 роки тому +1

    liked and subscribed. Thanks.

    • @MichelvanBiezen
      @MichelvanBiezen  2 роки тому +2

      Glad you found our videos. Welcome to the channel!

  • @genopage8624
    @genopage8624 3 роки тому +1

    Thanks a lot for the explaination

  • @Julbbe
    @Julbbe 2 роки тому +1

    Thankyou for ur video 😭

  • @andresrebata1958
    @andresrebata1958 6 років тому +2

    Very good video. Thanks. I have a question, how did you come up with the 1/2(m • x^2) before integrating? where did that x squared come from? In fact, all that formula, it kind of looks like the kinetic energy formula. Thanks

    • @MichelvanBiezen
      @MichelvanBiezen  6 років тому +2

      mx^2 is the moment of inertia of a point mass rotating about an axis with a radius of x. If it is a dist that is rotating, the equation for the moment of inertia becomes (1/2) mx^2

    • @andresrebata1958
      @andresrebata1958 6 років тому +1

      Michel van Biezen Thanks!!! I guess the equation of moment of inertia of a rotating disk has in it of itself its own derivation??

    • @MichelvanBiezen
      @MichelvanBiezen  6 років тому +1

      We have playlists on the moment of inertia. Take a look.

  • @sakibkhursheed1354
    @sakibkhursheed1354 3 роки тому +1

    It can also be solved by taking hollow sphere as elemental mass

    • @MichelvanBiezen
      @MichelvanBiezen  3 роки тому +1

      Yes, that will work. Did you work it out that way?

    • @sakibkhursheed1354
      @sakibkhursheed1354 3 роки тому +1

      @@MichelvanBiezen yes, I got the same result

    • @sakibkhursheed1354
      @sakibkhursheed1354 3 роки тому +1

      This disc method is little complex but hollow sphere method is more easy..

    • @MichelvanBiezen
      @MichelvanBiezen  3 роки тому +1

      It can indeed be done both ways. This is an illustration of how it would be done using disks.

  • @mangangninang4956
    @mangangninang4956 6 років тому +1

    very well explained
    thank you , sir

  • @joshuaaa3337
    @joshuaaa3337 4 роки тому

    hey professor. your videos were and still are amazing. i just wanna ask you, have you ever thought to solve this problem in the Spherical Coordinates?

    • @MichelvanBiezen
      @MichelvanBiezen  4 роки тому +3

      We are still expanding all the various topics with our videos. It just takes time (and a lot of work) to do so.

  • @skaa_1089
    @skaa_1089 7 років тому +1

    Your amazing! keep up the great work! :)

  • @umerwaqas3916
    @umerwaqas3916 8 років тому +5

    easy & simple derivation........but i have a question
    sir u have written x^2+z^2=R^2...
    but why it shouldn't be x^2+(z+dz)^2=R^2

    • @MichelvanBiezen
      @MichelvanBiezen  8 років тому +3

      When you integrate you let dz approach 0, therefore in the limit, those 2 equations are identical.

    • @umerwaqas3916
      @umerwaqas3916 8 років тому

      got it.
      thanks...

  • @nimaalz4513
    @nimaalz4513 Рік тому +2

    why it is 1/2 of the whole thing ?

    • @MichelvanBiezen
      @MichelvanBiezen  Рік тому +2

      The moment of inertia of a solid disk is (1/2) MR^2

  • @shibbirahmed3661
    @shibbirahmed3661 3 роки тому

    I Love You Sir!💞

  • @CaioCesar-gr9te
    @CaioCesar-gr9te 5 років тому

    you're a great teacher!

  • @gokalpulku7356
    @gokalpulku7356 9 років тому +4

    this is so great thank you for the explanation

  • @baydood510
    @baydood510 7 років тому +2

    How did you get the Z to use in the Pythagorean theorem? X is obvious because you related the thin disk slice as a distance X, and R was already stated so you just placed a mirror image. But you never mentioned the vertical distance 'Z', and I don't know what you are relating that with? Z is the vertical axis, and z is also the vertical side of the triangle?? I'm sorry please explain

    • @MichelvanBiezen
      @MichelvanBiezen  7 років тому +1

      If we replace z with y then the equation would be x^2 + y^2 = r^2 (instead of x^2 + z^2 = r^2) they are both the exact same triangle.

    • @baydood510
      @baydood510 7 років тому +1

      Thank you for replying professor, but now I don't see and understand the "y" comparison. Where does it say in this video about a "y"? This is what I don't get. How did you find z, and where is y if that is where you found or related z from?

    • @MichelvanBiezen
      @MichelvanBiezen  7 років тому +1

      Then I didn't understand your original question. What specifically are you not sure about?

    • @baydood510
      @baydood510 7 років тому +1

      at 4:00 you are trying to "find a way to convert from x to z". How did you get the z in the triangle you created and then used in your Pythagorean theorem?

    • @MichelvanBiezen
      @MichelvanBiezen  7 років тому +1

      We have a circle defined as x^2 + z^2 = r^2. 1) Solve that equation for x. 2) Then find x^4. 3) Then substitute x^4 in the integral by the expression you found in the previous step (2).

  • @realats
    @realats 8 років тому

    Excellent Explanation..appreciated..thank you..!

  • @m.d.lu.m.d9292
    @m.d.lu.m.d9292 8 років тому +1

    THANKS, YOU ARE THE best

  • @Bearman5
    @Bearman5 6 років тому +1

    Delicious Maths!

  • @brnygtg281
    @brnygtg281 6 років тому +1

    If we have taken the moment of inertia as mx² instead of ½mx²(I know this is moment of inertia of spherical disk) and detect the bounds as 0 to R instead of -R to R, we would find same result. Is it coinsidence or a thing that need to think deep.

    • @joao_pedro_c
      @joao_pedro_c 6 років тому +1

      How? If we use mx^2, the final result is 4/5*mR^2. Or did I make a mistake?

  • @YommiOfficial
    @YommiOfficial 6 років тому

    Incredible thank you

  • @eXtremi5
    @eXtremi5 8 років тому +1

    it's brilliant...thanks a lot...

  • @liping23
    @liping23 9 років тому

    So dv is the volume of the thin disk (px^2dz), and in the density function v is the whole volume of the sphere (4pir^3)
    Why did you use two different Vs and what's the difference between these two?

    • @MichelvanBiezen
      @MichelvanBiezen  9 років тому

      Li Ping Hsu I don't understand the question
      dV is the volume of the thin disk and approached zero in the limit as dz approaches zero, this is the concept of calculus
      V is the volume of the sphere.
      There is no second V
      Unless you think that dV and V are two different volumes?
      dV is the differential of V, which is a concept in calculus.

    • @baydood510
      @baydood510 7 років тому

      Hi Professor,
      I think he did mean that dV and V are two different volumes. One of them is the volume of the thin disk (dv) and the other is the volume of the sphere (V). You solved for Rho = M/V in the beginning and plugged that in as the final value for Rho (after integration was over). He wants to know why couldn't you just use the other Rho (Rho = dm/dv) instead?
      I think this is because the density (Rho) is Uniform which is why we have the same Rho with two different equations/formulas (Rho = dm/dv and Rho = M/V). So Dm is infinitesimal (and we already took the integration) so the Rho we plug into the final answer is (M/V). Sorry if I didn't explain it well but I was wondering the same thing until I thought of it this way.

  • @PhatHuynh-tt9bn
    @PhatHuynh-tt9bn 6 місяців тому

    if I calculates the x^4 equal R^4 (times) cos^4(theta), so how to I can solve this assignment?

  • @benyamintoraja
    @benyamintoraja 5 років тому +2

    Is it possible to find the I of the sphere by taking dm paralel to the axis z ?

  • @md.touhidulislam4668
    @md.touhidulislam4668 3 роки тому +1

    Sir do you have any video on product of inertia?

    • @MichelvanBiezen
      @MichelvanBiezen  3 роки тому +1

      Yes, look in this playlist: MECHANICAL ENGINEERING 12 MOMENT OF INERTIA in the mechanical engineering videos on this channel

    • @md.touhidulislam4668
      @md.touhidulislam4668 3 роки тому +1

      @@MichelvanBiezen Thank you sir

  • @David-ur7og
    @David-ur7og 5 років тому

    For the infinitesimal disc isn’t the limit taken from 0 to R for it to be 1/2 x^2 dm? However in the video the same formula is for -R to R, this part confused me and I would be grateful for some help. Thank you for reading this.

    • @MichelvanBiezen
      @MichelvanBiezen  5 років тому

      You must integrate from - R to + R because you want to sum up the whole mass of the sphere. (the slices are summed up from the bottom of the sphere to the top of the sphere)

    • @David-ur7og
      @David-ur7og 5 років тому

      Michel van Biezen thank you very much.

  • @jarreddiaz839
    @jarreddiaz839 7 років тому +2

    In your cylinder video, you integrated from 0 to R treating 0 as the axis of rotation. Why isnt it the same in this one?

    • @MichelvanBiezen
      @MichelvanBiezen  7 років тому +2

      The limits of integration are chosen as needed. There is no set rule.

    • @jarreddiaz839
      @jarreddiaz839 7 років тому +2

      Michel van Biezen so depending on the section chosen, the limits are different? Thank you

    • @MichelvanBiezen
      @MichelvanBiezen  7 років тому +2

      Yes. the limits will be unique to the approach used.

  • @Aster-t3g
    @Aster-t3g 11 місяців тому +1

    why do i get a different answer when i take x=R*cosθ and dz=r*dθ (R being the radius of the sphere)
    Is there something wrong with this substitution?

    • @MichelvanBiezen
      @MichelvanBiezen  11 місяців тому +1

      Why not use the method shown? I would need to see the drawings you use to come up with thos substitutions to determine if they are correct.

  • @tanmoyroy9081
    @tanmoyroy9081 8 років тому +12

    Sir, why dI= 1/2dm x r(square) ?? Can you plz

    • @MichelvanBiezen
      @MichelvanBiezen  8 років тому +13

      The moment of inertia of a solid disk is: I = (1/2) mR^2, so the moment of inertia of a this slice is: dI = (1/2) dm R^2

    • @abhishekkumaranand837
      @abhishekkumaranand837 8 років тому

      Actually I=MK^2, And K=r/root2, Which further Became (MR^2)/2

    • @Peter_1986
      @Peter_1986 8 років тому

      +Michel van Biezen
      Can this kind of method be used for a spherical shell as well?

  • @Duke_Of_The_Underworld
    @Duke_Of_The_Underworld Рік тому +1

    thank you sir . your work helps millions

  • @angeluomo
    @angeluomo 9 років тому +2

    Excellent explanation.

  • @ako969
    @ako969 7 років тому +1

    If it is rotating along z-axis (vertically), why is he integrating the z-slices? shouldn't he be doing x-slices?

    • @MichelvanBiezen
      @MichelvanBiezen  7 років тому +1

      Try using slices in a different direction and see if you can get the moment of inertia that way. (best way to find out).

  • @aniketaher4691
    @aniketaher4691 8 років тому

    good explanation.

  • @Humanity____1995
    @Humanity____1995 3 роки тому +1

    Tq 👍

  • @imranphysicsts
    @imranphysicsts 4 роки тому

    Well explained

  • @monisali4858
    @monisali4858 6 років тому +2

    Thank u sir

  • @neurotricity
    @neurotricity Рік тому +1

    thank you!

  • @harivenkatesh3816
    @harivenkatesh3816 6 років тому

    Thanks a lot Sir!

  • @andrei642
    @andrei642 9 років тому +1

    thank you,sir!!

  • @bryyanruiz1750
    @bryyanruiz1750 5 років тому +1

    How did you find dv?

  • @bhartiya12356
    @bhartiya12356 6 років тому +1

    thank you sir

  • @sakibkhursheed1354
    @sakibkhursheed1354 3 роки тому +1

    Amazing

  • @shahidahmed7511
    @shahidahmed7511 9 років тому +3

    why is the moment of inertia of a rotating disc 1/2*m*r^2
    why is it not = mr^2

    • @MichelvanBiezen
      @MichelvanBiezen  9 років тому +1

      shahid ahmed Look at the moment of inertia video (4 of 6).
      It is explained there.

    • @shahidahmed7511
      @shahidahmed7511 9 років тому

      Thnks

    • @MichelvanBiezen
      @MichelvanBiezen  9 років тому

      alltherestaretaken
      Are you referring to a different video? On this video, dV = pi * x^2 dz

    • @MichelvanBiezen
      @MichelvanBiezen  9 років тому

      alltherestaretaken
      The moment of inertia of a disk is: 1/2 m R^2

    • @shahidahmed7511
      @shahidahmed7511 9 років тому

      Thanks brother

  • @afnansiddique4094
    @afnansiddique4094 7 років тому

    Amazing!

  • @rakshithsooriya3620
    @rakshithsooriya3620 2 роки тому +1

    Sir, where did that half went sir

    • @rakshithsooriya3620
      @rakshithsooriya3620 2 роки тому +1

      In that 4th step, that is I = rho × phi integration of x ^4 dz limits 0 to R

    • @rakshithsooriya3620
      @rakshithsooriya3620 2 роки тому +1

      I got confused in that part.....

    • @MichelvanBiezen
      @MichelvanBiezen  2 роки тому +1

      I changed the limits from -R to R to 0 to R because of the symmetry. That is why the 1/2 was dropped.

  • @milan1928
    @milan1928 Рік тому +1

    Thanks sir

  • @izzatredza854
    @izzatredza854 8 років тому +1

    How can we derive a formula for an irregular solid?

    • @MichelvanBiezen
      @MichelvanBiezen  8 років тому +1

      You will need to know the equations that define the solid (and it will be much more difficult).

    • @izzatredza854
      @izzatredza854 8 років тому

      Thank you sir

  • @erwinjedracho640
    @erwinjedracho640 8 років тому +1

    nice proof

  • @smaragdabenetou8752
    @smaragdabenetou8752 6 років тому

    i tried changing x into Rcosθ and dz into Rdθ since it can be viewed as the arc of a circle with radius R. So then i did the integral of sin^4θdθ from 0 to π/2. But it doesnt give the right answer and i cant find the mistake. can you help me?

    • @MichelvanBiezen
      @MichelvanBiezen  6 років тому +1

      If you want to use spherical coordinates, you have to use the proper dV = R^2 sin(phi) dr d(theta) d(phi) and integrate over those variables.

  • @sajjad213
    @sajjad213 4 роки тому

    why we consider the height dz for a solid sphere and r.d(theta) for hollow sphere?
    why can't we use r.d(theta) for both? (for solid sphere, it doesn't work!)

    • @MichelvanBiezen
      @MichelvanBiezen  4 роки тому

      The rule of thumb is that you want to use the technique that makes the integral the easiest.

  • @saramasaya9689
    @saramasaya9689 4 роки тому +1

    I love you

  • @jayeffiong6340
    @jayeffiong6340 8 років тому

    Just confused. When u integrated from 0 to R shouldn't it be half the original integration? Why double the integration?

    • @jayeffiong6340
      @jayeffiong6340 8 років тому

      I think I get it now. Integrating the expression from 0 to R is half the sphere. So from -R to R is double that.

    • @MichelvanBiezen
      @MichelvanBiezen  8 років тому +4

      Exactly. You figured it out.

  • @stimulantdaimamld2099
    @stimulantdaimamld2099 2 роки тому +1

    great

  • @AnonymousAndroid
    @AnonymousAndroid 8 років тому

    the best explanation

  • @dust.7625
    @dust.7625 6 років тому +1

    Why are we moment of inertia =1/2x^2dm instead of =x^2dm

  • @ilkertalatcankutlucan3257
    @ilkertalatcankutlucan3257 7 років тому +1

    What are the units of mass and radius ?

  • @antonofka9018
    @antonofka9018 6 років тому +1

    You forgot to change the bounds of integration

    • @MichelvanBiezen
      @MichelvanBiezen  6 років тому +1

      No, it was done correctly. Thanks for checking.

  • @nagaraju-pq6nv
    @nagaraju-pq6nv 7 років тому +2

    why dm=1/2 dm x^2 is taken

    • @MichelvanBiezen
      @MichelvanBiezen  7 років тому

      it is dI = dm x^2 and the reason is that the equation of the moment of inertia for a solid disk is: I = (1/2) mR^2

    • @nagaraju-pq6nv
      @nagaraju-pq6nv 7 років тому

      yes but when we are going to find I from dI by integrating we should take integration of dm x^2 only no but 1/2 dm x^2 u have taken why??

    • @MichelvanBiezen
      @MichelvanBiezen  7 років тому

      The small dm is a solid cylinder, so you must use the same equation.

    • @nagaraju-pq6nv
      @nagaraju-pq6nv 7 років тому

      how will be the small element will be solid cylinder it must be circular plate

    • @MichelvanBiezen
      @MichelvanBiezen  7 років тому

      They both have the same formula for the moment of inertia.

  • @Lynch-rp1fu
    @Lynch-rp1fu 6 років тому

    why does di = 1/2dmx^2 rather than x^2dm ?? plz help me .....

    • @MichelvanBiezen
      @MichelvanBiezen  6 років тому

      The moment of inertial of a flat disk is: I = (1/2) MR^2 (See the other videos in the playlist: PHYSICS 12 MOMENT OF INERTIA)

    • @Lynch-rp1fu
      @Lynch-rp1fu 6 років тому

      @@MichelvanBiezen thank you very much , I've realized that right after i calculate the I of the flat disk again by mu self . tks !!

  • @jackgillam6956
    @jackgillam6956 4 роки тому

    how come dI = 1/2dm x^2?

    • @MichelvanBiezen
      @MichelvanBiezen  4 роки тому

      Since the moment of inertia is algebraically additive, we can calculate the moment of inertia of each slice and add them up to give the moment of inertia of the whole object. (This is an integration technique)

    • @connorfitzgerald640
      @connorfitzgerald640 4 роки тому

      That is the formula definition of the moment of inertia of a thin disk along the z-axis:
      en.wikipedia.org/wiki/List_of_moments_of_inertia#:~:text=Thin%2C%20solid%20disk%20of%20radius%20r%20and%20mass%20m.&text=Also%2C%20a%20point%20mass%20m,%2C%20with%20r1%20%3D%200.
      You can look up the moment of inertia derivation of a thin disk if you want to know why.

  • @soumyajitsarkar2372
    @soumyajitsarkar2372 7 років тому +1

    When i take x = R cos (theta) and dz=R x d(theta) and integrate from theta = o to pi/2 , why don't we get the desired results ? (I mean the moment of inertia value comes different)

  • @mdashfakhossain6380
    @mdashfakhossain6380 4 роки тому

    is it polar moment of inertia?

    • @MichelvanBiezen
      @MichelvanBiezen  2 роки тому +1

      The moment of inertia is not associated with "polar", but with the distance from the axis of rotation.

  • @bakingenbraden853
    @bakingenbraden853 5 років тому +1

    Is it necessary to use di? I tried it by just filling in for r^2 and dm, and then integrating from -R to R, but this gives an answer that is twice what it should be. But this method works for other shapes like a rod for example. Yet for this one the di method seems necessary, i don't quite understand why there seem to be different methods for different shapes.

    • @MichelvanBiezen
      @MichelvanBiezen  5 років тому +1

      Your method assumes that you have a hollow object instead of a solid object. The moment of inertia of a solid disk = (1/2) MR^2

    • @bakingenbraden853
      @bakingenbraden853 5 років тому +1

      @@MichelvanBiezen I see, thanks very much

  • @Rohan_Mahato
    @Rohan_Mahato 3 роки тому +1

    Mercy buckets

  • @hasankahraman7046
    @hasankahraman7046 6 років тому +4

    ı am dead

  • @deepikasingh-tf4es
    @deepikasingh-tf4es Рік тому +1

    Thank you sir

    • @MichelvanBiezen
      @MichelvanBiezen  Рік тому +1

      You are welcome. Glad you found it helpful. 🙂