The Binomial and Poisson Distributions

Поділитися
Вставка
  • Опубліковано 3 січ 2025

КОМЕНТАРІ • 25

  • @xxelurraxx232
    @xxelurraxx232 Рік тому +5

    Thank you SO much. Especially for deriving the formula. I kept reading about how the Poisson distribution was the limiting case of the Binomial distribution, but didn't understand what people meant until now. Your graphics are amazing. Thank you for sharing your knowledge and putting so much work into this!

  • @zelalem9249
    @zelalem9249 Рік тому +3

    Very brilliantly described. You refreshed my Maths (that I did long time ago) very nicely. Thank you very much.

  • @vaggelisntaloukas2016
    @vaggelisntaloukas2016 2 роки тому

    Thanks!

    • @SerranoAcademy
      @SerranoAcademy  2 роки тому

      Thank you so much for your contribution, Vaggelis! It’s really appreciated 😊

    • @vaggelisntaloukas2016
      @vaggelisntaloukas2016 2 роки тому

      @@SerranoAcademy it was a great tutorial, glad I discovered your channel

  • @shashankshekharsingh9336
    @shashankshekharsingh9336 Рік тому +1

    amazing , never saw someone explaning like this , thanks you

  • @ja100o
    @ja100o Рік тому +1

    Small improvement for the chapters: 11:08 is the start of the Poisson distribution.
    Other than that, great as always:)

  • @zazakh7804
    @zazakh7804 2 місяці тому

    Thank you so much, it was exactly what I was looking for to completely understand the Poisson distribution

  • @prakashselvakumar5867
    @prakashselvakumar5867 2 роки тому

    Explained well! I understand that you have put lot of effort to make this video visually appealing and color coding. Thank you.

  • @sassydesi7913
    @sassydesi7913 2 роки тому +1

    I came here based on Jay's shoutout in his Keynote video. And glad here. Your tuts are visually appealing. We'd love if you could give a quick walkthrough of how you got about using Keynote to make animations. Like your typical workflow and tips/tricks while using Keynote.

  • @leonnomos1384
    @leonnomos1384 2 роки тому

    Excellent pedagogical approach! Clarified very much

  • @piobr
    @piobr 9 місяців тому

    Absolutely high quality video! Thank you so much. ❤

  • @florentinosanchez3969
    @florentinosanchez3969 9 місяців тому

    Awesome explaining. Thank you so much for making this !!!!!❤

  • @simeonthomas5881
    @simeonthomas5881 Рік тому

    Great video as usual! Please also explain Geometric, Exponential, Weibull, Erlang, NBD etc. Thanks!

  • @yingqu6932
    @yingqu6932 2 роки тому

    Never seen better, awesome A+

  • @haikvoskerchian2857
    @haikvoskerchian2857 7 місяців тому

    At 25:00 you said the fact that the poissonn distribution has 2 modes is an anomaly. But actually for every integer lambda, the poisson distribution has two modes. I wouldn't call that an anomaly.

  • @samirelzein1095
    @samirelzein1095 Рік тому

    amazing as usual!

  • @shashankshekharsingh9336
    @shashankshekharsingh9336 Рік тому +1

    amazed 🤯

  • @79JuanManuel
    @79JuanManuel 2 роки тому

    Excellent explanation

  • @haushofer100
    @haushofer100 2 роки тому

    I like your videos a lot! Edit: removed confused question, solved it.

  • @nisankarachandana6612
    @nisankarachandana6612 2 роки тому

    zing zing amazing explanation !!!!

  • @420_gunna
    @420_gunna 6 місяців тому

    4:26 "As N tends to infinity, the binomial distribution tends to the gaussian distribution, as per the CLT"
    This is not true, as far as I can tell. It tends to the poisson distribution.
    And the CLT is about the distribution of SAMPLE MEANS converging to a normal distribution as the number of sample means increases.
    Makes me worried about things that I'm not catching

  • @pseudounknow5559
    @pseudounknow5559 2 роки тому

    Excellent