Irrational Root 2!

Поділитися
Вставка
  • Опубліковано 1 гру 2024

КОМЕНТАРІ • 139

  • @YouTube_username_not_found
    @YouTube_username_not_found 7 місяців тому +645

    Infinite descent!

    • @MathVisualProofs
      @MathVisualProofs  7 місяців тому +36

      😀

    • @attackoramic8361
      @attackoramic8361 7 місяців тому +53

      just like my life

    • @O_79
      @O_79 7 місяців тому +1

      @@attackoramic8361xd

    • @no-one-1
      @no-one-1 7 місяців тому +1

      @@attackoramic8361😀

    • @hmkl6813
      @hmkl6813 6 місяців тому +2

      First time its actually infinite

  • @jan-timolobner
    @jan-timolobner 7 місяців тому +181

    I finally understood one of your videos.
    I might not understand every video, but I am determined to learn, so thank you for your hard work on these awesome videos.

    • @MathVisualProofs
      @MathVisualProofs  7 місяців тому +29

      Happy to hear that! Keep it up. It takes time and I do rely on other facts

    • @alegoncalves472
      @alegoncalves472 7 місяців тому +8

      Beautiful to hear that!!! Hope to be like that as well mate 🤗🤗🤗🤗 greetings from Venezuela!!!

    • @GiganFTW
      @GiganFTW 6 місяців тому +1

      @@alegoncalves472shouldnt you be hunting for dogs in the street instead of trying to learn math from youtube?

    • @alegoncalves472
      @alegoncalves472 6 місяців тому

      @@GiganFTW Math must be understood in order to hack the city mate 😁😂😂😂

  • @Emily-fm7pt
    @Emily-fm7pt 7 місяців тому +49

    I appreciate the elegance of the proof! Especially the last part I feel is more intuitive than the usual “you can always divide by two,” because in this case it’s clear that you’ll eventually just run out of positive integers to work with, which causes the contradiction

    • @Fire_Axus
      @Fire_Axus 7 місяців тому

      your feelings are irrational

    • @aymangani5416
      @aymangani5416 7 місяців тому

      @@Fire_Axusyour mass commenting is irrational… do something better with ur time lol

  • @Ninja20704
    @Ninja20704 7 місяців тому +13

    I really like these geometric proofs because I was only ever taught algebraic proofs for proving this such as the classic proof, or other things like the FTA or rational zero theorem. Thank you for teaching me new things

    • @maxborn7400
      @maxborn7400 7 місяців тому +1

      before algebra, people specifically used geometric proofs. That's why it took a while before people accepted negative solutions to a quadratic formula, because it seemed "nonsense" to accept x = -2 for x^2 = 4.

  • @holyek7892
    @holyek7892 7 місяців тому +14

    These videos make me so happy and mad. Where were they when I needed them in geometry and calculus? They make everything so clear and comprehensible.

    • @Fire_Axus
      @Fire_Axus 7 місяців тому

      your feelings are irrational

  • @nargacugalover
    @nargacugalover 7 місяців тому +116

    Luckily 2! is still 2. So the title is still right in a way

    • @orisphera
      @orisphera 7 місяців тому +32

      So r/unexpectedfactorial didn't change the meaning in this case

    • @nargacugalover
      @nargacugalover 7 місяців тому +4

      @@orisphera yep

    • @ahmadmneimneh
      @ahmadmneimneh 7 місяців тому +2

      ​@@orisphera r/ihavereddit

    • @orisphera
      @orisphera 7 місяців тому +1

      @@ahmadmneimneh r/ihaveihavereddit

    • @ahmadmneimneh
      @ahmadmneimneh 7 місяців тому +2

      @@orisphera I shall summon the cursed subreddit, r/ihaveihaveihavereddit

  • @dragansantrac4011
    @dragansantrac4011 7 місяців тому +65

    Wow. One of the best proofs of irrationality of sqrt(2)

    • @Fire_Axus
      @Fire_Axus 7 місяців тому +2

      no

    • @bd8037
      @bd8037 7 місяців тому

      @@Fire_Axusyes one of the best visual proofs. You are wrong

  • @tweep978
    @tweep978 7 місяців тому +2

    This is the best explanation of this I've ever seen

  • @FLS96
    @FLS96 2 місяці тому +2

    Nice proof, I've haven't seen a visual one of this before! If someone's still not getting it:
    If √2 were rational, there would have to exist (finite) integers a and b so that a/b = √2.
    a/b = √2, square both sides
    a²/b² = 2, multiply by b²
    a² = 2b²
    So proving the irrationality of √2 is equivalent to proving there is no square of an integer, that is double the square of another integer. The proof by contradiction in the video assumes the opposite. There are no finite a and b to satisfy these equations, so √2 has to be irrational.
    Correct me if I'm wrong, thanks!

  • @MathFromAlphaToOmega
    @MathFromAlphaToOmega 7 місяців тому +4

    If you go in the other direction with increasing pairs, you'll get better and better approximations to sqrt(2). Those should correspond to solutions to Pell's equation a^2-2b^2=±1.

    • @jessehammer123
      @jessehammer123 7 місяців тому

      Well, as long as your original pair satisfies the Pell equation. If you start with, say, (8,5) instead of (7,5), the ratio tends to phi instead of sqrt(2).

    • @MathFromAlphaToOmega
      @MathFromAlphaToOmega 7 місяців тому

      @@jessehammer123 You won't always get solutions to Pell's equation, but the ratio should always approach sqrt(2). Assuming my calculations are right, (8,5) becomes (18,13), and then one more iteration gives (44,31). The ratio of those is pretty close to sqrt(2).

    • @zytr0x108
      @zytr0x108 6 місяців тому

      You're right! I wrote a Julia program to try it out:
      a = b = 1
      sr2 = sqrt(2)
      while (a/b != sr2)
      a = a + 2*b
      b = a - b
      println("$a / $b = $(a/b)")
      end
      On my machine, the loop exits after 21 iterations when it gets to the maximum precision a Float64 can hold.

  • @AndrewBalm
    @AndrewBalm 7 місяців тому +2

    Simple and intuitive. Amazing!

  • @hidude1354
    @hidude1354 7 місяців тому +1

    awesome! love how the well ordering axiom can prop up in fun ways

  • @orisphera
    @orisphera 7 місяців тому +1

    I prefer the following instead of infinite descent:
    Take the smallest counterexample. By the step, there's a smaller one. This is a contradiction.
    You can note that this is essentially a special case of a reasoning that under a slightly different formulation is known as transfinite induction. It's similar to induction, but more powerful. It's also proven differently. Normal induction is proven from the definition of natural numbers (and 0) as ones reachable by the operations. (By “reachable”, I mean present in every set closed under them.) Transfinite induction is essentially the well-orderedness (existence of the smallest in every subset) of the natural numbers (or whatever set you're using), although for N it may be easier formulated as the normal induction over prefixes

  • @matthewbay1978
    @matthewbay1978 7 місяців тому +1

    I love that proof, proving root two is irrational is part of my favorite proof which proves you can raise an irrational number to an irrational number and get a rational number.

  • @jakobr_
    @jakobr_ 7 місяців тому +10

    I feel like there’s a missing step where it’s explained that b is between a and a/2 so that the small carpets can overlap like that

    • @bobh6728
      @bobh6728 7 місяців тому +1

      If the two smaller didn’t overlap, then a^2 wouldn’t equal 2b^2, because a^2 would just be the 2b^2 plus the uncovered area. So a^2 would be larger then 2b^2.
      So pointing that out missing.

    • @Fire_Axus
      @Fire_Axus 7 місяців тому +1

      your feelings are irrational

  • @Marcus-y1m
    @Marcus-y1m 6 місяців тому +1

    This demonstration is a genius move

  • @iyraspusjfzifzocyoyxyoxyoxoy
    @iyraspusjfzifzocyoyxyoxyoxoy 2 місяці тому +2

    thanks, Vsauce!

  • @babusseus1105
    @babusseus1105 6 місяців тому +2

    Cool proof!

  • @tamaz88
    @tamaz88 7 місяців тому +15

    This would have been a perfect video to be made into a loop, but looks like we didn’t get to see that

    • @ThreadedNail
      @ThreadedNail 7 місяців тому

      Or, did you?

    • @tamaz88
      @tamaz88 7 місяців тому

      @@ThreadedNail VSauce reference ❓❓❓

    • @canyoupoop
      @canyoupoop 7 місяців тому

      ​And as always, thanks for watching​@@tamaz88

    • @ThreadedNail
      @ThreadedNail 7 місяців тому

      @@tamaz88 its a math loop. So the reference fit.

  • @stephenliao63
    @stephenliao63 6 місяців тому

    simplify sqrt to r
    a/b = r(2) for some a,b inZ+, gcd(a,b)=1
    a=r(2)b
    aa=2bb
    lhs has factor 2 but there are two a so 4 | a
    Thus 4 | 2bb and this imply 2 | bb
    Which means 2 is factor of b
    So gcd(a,b) does not equal to one. Therefore, no such coprime integer pair (a,b) exists
    I think this is the same to the video but in different way of recursively decreasing a and b
    If we use the well ordered property of integer and state (a,b) is the least element satisfying the equation then we do not have to state the recursive part

  • @noahblack914
    @noahblack914 6 місяців тому +4

    Took me a minute to figure out why a^2=2b^2 means √2 is rational.
    If √2 is rational, then there exists integers a, b where a/b = √2. Multiply both sides by b and then square them.

  • @chixenlegjo
    @chixenlegjo 6 місяців тому +2

    Nice proof, but I’ll propose my personal favorite:
    The exponents in the prime factorization of a perfect square are always even. When you multiply this perfect square by a prime number, the exponent in that prime factor becomes odd. This means that you cannot multiply a perfect square by any prime number to get a perfect square. Therefore, the square root of any prime number is irrational.

    • @MathVisualProofs
      @MathVisualProofs  6 місяців тому

      A good one for sure. Hard to do it visually though :)

  • @lenskihe
    @lenskihe 7 місяців тому +1

    Nice one!

  • @ValkyRiver
    @ValkyRiver 7 місяців тому +1

    By the way, Mathologer also made a video with a similar trick on root3, root5, and root6

  • @bluebow9347
    @bluebow9347 7 місяців тому +1

    Magnificent!

  • @SivaSiva-k5t
    @SivaSiva-k5t 7 місяців тому +2

    All is well
    🎉🎉🎉

  • @MdTanvir-eh6so
    @MdTanvir-eh6so 7 місяців тому +1

    I love mathematics ❤❤

  • @tellusorbit
    @tellusorbit 5 місяців тому

    There is a far simpler proof of the square root of two being irrational I used to demonstrate to my students which didn't involve either geometry or algebra. It was an indirect proof that used simple elementary school arithmetic. My students loved it.

  • @rohitjohn6180
    @rohitjohn6180 7 місяців тому +1

    What if instead of two, we try to prove sqrt(4) is irrational? Does it still work?

    • @MathVisualProofs
      @MathVisualProofs  7 місяців тому

      Can’t do it. Because 4 1x1 squares actually fit perfectly in a 2x2 square. No overlap so no carpets theorem infinite descent.

    • @rohitjohn6180
      @rohitjohn6180 7 місяців тому

      I see thanks

  • @iyraspusjfzifzocyoyxyoxyoxoy
    @iyraspusjfzifzocyoyxyoxyoxoy 2 місяці тому +2

    fractal imagery...

  • @JustinChan-u3r
    @JustinChan-u3r 7 місяців тому

    How did you get the first equation (a^2=2b^2)?

    • @MathVisualProofs
      @MathVisualProofs  7 місяців тому +2

      if root(2) = a/b, then root(2)*b = a, so 2b^2=a^2.

  • @kexcz8276
    @kexcz8276 7 місяців тому +1

    Wow, cool, yet I know I will forgot that lin like next 10 mins... 😂

  • @narfharder
    @narfharder 7 місяців тому

    For a long time something vaguely bothered me about this particular proof by contradiction, now I've finally put my finger on it. Thanks for the epiphany! (Surely this has been thought of before, I'm just an armchair amateur who wouldn't even know what book to read about it.)
    Consider this is really a proof that √2 is not rational. So, either "irrational" is merely defined as not rational, meaning we have only proven a contradiction by contradiction; or, if "irrational" has a positive definition, then we must first prove that "rational" and "irrational" are in fact mutually exclusive.
    Now I wonder if these two ways of defining "irrational" are themselves mutually exclusive - so, what obvious thing have I missed?

    • @Ninja20704
      @Ninja20704 7 місяців тому

      Irrational are only really definable as “not rational” so that automatically makes them mutually exclusive.
      There is no positive definition of irrationals because there is no specific form or anything that all irrational numbers fit/satisfy.

    • @Emily-fm7pt
      @Emily-fm7pt 7 місяців тому +3

      The definition of rationality that’s most often applied is “a number is rational if it can be written as a ratio of two coprime (irreducible) integers,” and thus irrational is anything that cannot be represented under that system. Though, an important thing you start to realize as you go further into advanced math is that most big concepts have a bunch of different (provably) equivalent definitions, and it’s really just about picking which one is most convenient at the time. In this case, most proofs are based on showing that any ratio will be infinitely reducible, causing a contradiction, so this definition is favorable compared to something like a more set theory focused definition.
      If you are interested in this stuff, it’s never too late to just start learning math! Anyone with knowledge from Algebra 2 read most undergrad level math textbooks tbh

    • @narfharder
      @narfharder 7 місяців тому

      Well, I found the "book" I needed to fill my knowledge gap. en.wikipedia.org/wiki/Square_root_of_2#Constructive_proof gives a proof that √2 _is a number_ that cannot be rational, while all the proofs by contradiction only prove that _if it is a number,_ it cannot be a rational one - leaving it undecided whether √2∈ℝ.

    • @sigmaoctantis5083
      @sigmaoctantis5083 7 місяців тому +1

      @@narfharder I think you are making this more complicated than necessary: all common proofs of "the irrationality of √2" show that there is no rational number a/b whose square equals 2. They don't need any assumptions about whether √2 _is_ a number. This is a different story: since √2 naturally occurs as the length of a diagonal in a unit square, it should be a number, and therefore we are well-advised to extend the rational numbers to the reals or at least the algebraic numbers.

  • @DanDart
    @DanDart 7 місяців тому

    I'm interested to know if there's a proof not involving contradiction, or if that can't exist. I'm category theorying this real abstract stuff.

    • @MathVisualProofs
      @MathVisualProofs  7 місяців тому

      They all have to use contradiction I think-though some are better at hiding it :)

  • @jimnewton4534
    @jimnewton4534 7 місяців тому +2

    why is (2b-a)

    • @KDev-fq9iq
      @KDev-fq9iq 7 місяців тому

      Since a>b , say a=b+x
      Implies 2b -a = 2b-b-x= b-x
      Seemingly ,a > 2b-a
      Now , let's say a-b =b in that case a^2 = 4b^2 { a=2b} which is not our assumption as we considered a^2= 2b^2
      Therefore , b has to be >1/2 of a
      Implying that a-b

    • @dazai826
      @dazai826 7 місяців тому +3

      b^2 < a^2 (talking only in natural numbers ) so b

  • @erberlon
    @erberlon 5 місяців тому

    It might have been helpful to explicit that such an infinite sequence cannot exist because the positive integers are a finite going down.

  • @TannerJ07
    @TannerJ07 6 місяців тому +1

    It would be cool to show it for perfect squares so the difference is visible

  • @jesse_cole
    @jesse_cole 5 місяців тому +1

    Quick, somebody explain this to Terrence Howard.

  • @Yam-fj4mh
    @Yam-fj4mh 39 хвилин тому

    My whole UA-cam recommended is just various ways to show the irrationality of root 2

  • @evdokimovm
    @evdokimovm 5 місяців тому

    But (2b - a)^2 is not equals to 2(a - b)^2 if we open brackets. (2b - a)^2 = a^2 - 4ab + 4b^2 and 2(a - b)^2 = 2a^2 - 4ab + 2b^2

    • @MathVisualProofs
      @MathVisualProofs  5 місяців тому

      But remember that our assumption is that a^2=2b^2

    • @evdokimovm
      @evdokimovm 5 місяців тому

      ​@@MathVisualProofs Oh, right! I forgot that. Now we get `2b^2 - 4ab + 4b^2` and `4b^2 - 4ab + 2b^2`. Sorry for another perhaps silly question, but does not the fact that they are equal mean that the sqrt(2) is rational?

    • @81312henry
      @81312henry 15 днів тому

      You misunderstood ,this equations work with (a,b), a and b are independent variables.reduce two equation,you will still get a^2=2b^2

    • @evdokimovm
      @evdokimovm 8 днів тому

      @@81312henry I have no idea what you mean here. But as author said above, remember that *a^2* is equals to *2b^2*, so, after we replace *a^2 by 2b^2* here: *a^2 - 4ab + 4b^2 = 2a^2 - 4ab + 2b^2* we get *2b^2 - 4ab + 4b^2 = 4b^2 - 4ab + 2b^2*. Then after adding *4ab* to both sides of the equation we get *2b^2 + 4b^2 = 4b^2 + 2b^2*

    • @81312henry
      @81312henry 8 днів тому

      @@evdokimovm you dont have to replace, a^2=2b^2 is the assumption.

  • @roberteospeedwagon3708
    @roberteospeedwagon3708 7 місяців тому

    why does this work for actual squares?

  • @platonicgeometryportal5567
    @platonicgeometryportal5567 5 місяців тому

    You are showing a geometric sequence with an arithmetic proof?

  • @anisurrahaman4490
    @anisurrahaman4490 7 місяців тому

    But ....i think...
    the side length of a square may be irritationl...then it will hold

  • @JuliusDofarios
    @JuliusDofarios 6 місяців тому

    Sorry, I do not understand. Never was Sqrt2 mentioned except the end and it was rushed. What are you proposing?

    • @shilohmagic7173
      @shilohmagic7173 6 місяців тому

      it's just a proof for why square root 2 is irrational, I think.

  • @David-bh7hs
    @David-bh7hs 7 місяців тому

    But it doesn’t? How can I suppose it?

  • @JordanBeagle
    @JordanBeagle 6 місяців тому +1

    It's squares all the way down!

  • @slayeryt637
    @slayeryt637 7 місяців тому +1

    Proof by contradiction :)

  • @joaoneves4150
    @joaoneves4150 7 місяців тому

    You could've included this in the video: Sqrt(2) = a/b

    • @MathVisualProofs
      @MathVisualProofs  7 місяців тому

      Yes. Probably should have. It’s in the longer one linked.

    • @jesusthroughmary
      @jesusthroughmary 7 місяців тому

      a^2 = 2 * b^2 is an equivalent statement

  • @tdubmorris5757
    @tdubmorris5757 7 місяців тому

    You forgot to explain how we get a^2 = 2b^2 which is confusing, I had to look it up
    √2 = a/b
    2 = a^2/b^2 (power 2 both sides)
    2b^2 = a^2 (multiply by b^2)

  • @99.googolplex.percent
    @99.googolplex.percent 7 місяців тому

    Everything means something. That's why this guy says "this means" so much.

  • @lucaupatree6139
    @lucaupatree6139 26 днів тому +1

    Missed the chance for a perfect loop.

  • @deon6045
    @deon6045 6 місяців тому

    So is 'a' the square root of 2, and 'b' is equal to 1?
    Without the context, it just feels like you threw a random ab equation at me.

    • @MathVisualProofs
      @MathVisualProofs  6 місяців тому

      I say “suppose that root 2 is rational so that there are integers a and b with … “
      Root 2 is not an integer

    • @deon6045
      @deon6045 6 місяців тому

      ​@@MathVisualProofs To be fair, I missed that, but I don't think you appreciate how little that explains to someone out of the know, and too out of practice to easily infer how you jump from assuming the root is rational, to the area of random squares.
      If I am taking a second guess... Are we dealing with squares, because both sides of the equation were squared so that we would have a solid 2, rather than 'a = b*(2^1/2)' ?

  • @Rutherford_Sam
    @Rutherford_Sam 7 місяців тому +1

    I must've messed up somewhere. This feels right, but wrong.

  • @brandon.m
    @brandon.m 7 місяців тому

    This is definitely a different proof for the sqrt(2) not being rational, but I would like to nitpick that you showed that if the sqrt(2) does exist, then it cannot be rational. You did not show sqrt(2) is irrational though since you did not show its existence.

  • @lkytmryan
    @lkytmryan 7 місяців тому

    I was just thinking That.

  • @Cruizzerr
    @Cruizzerr 5 місяців тому

    Why can't such a list of decreasing positive integers exist?

    • @81312henry
      @81312henry 15 днів тому

      Because there's no infinite integer

    • @Cruizzerr
      @Cruizzerr 15 днів тому

      ⁠@@81312henryRight but that’s not what the video is stating, it says that an infinite decreasing list of integers cannot exist. But can’t infinite sets exist?

    • @81312henry
      @81312henry 14 днів тому

      @@Cruizzerr yes, the infinite set of spliting process do exist. that is why the contradiction come from. He assume sqrt(2)=a/b, a and b be integer.

    • @Cruizzerr
      @Cruizzerr 14 днів тому

      @@81312henryI understand now, I misunderstood and ignored that their integers.

  • @adamosburn754
    @adamosburn754 7 місяців тому

    🤔🧐 A golden square…

  • @3_14pie
    @3_14pie 6 місяців тому +1

    turtles all the way down

  • @nilsalmgren4492
    @nilsalmgren4492 5 місяців тому

    I think mosr people accept the fact that unless you are taking a square root of a squared number, the result is irrational.

  • @john.john.johnny
    @john.john.johnny 7 місяців тому

    I truly wish I could understand this cuz I feel so close to understanding but anyway

    • @MathVisualProofs
      @MathVisualProofs  7 місяців тому

      Try the linked longer version. It’s slower and includes the carpets theorem.

  • @suhnih4076
    @suhnih4076 7 місяців тому

    😮

  • @JustRandomLights
    @JustRandomLights 7 місяців тому

    Too bad we don't have a perfect square that's exactly half of another perfect square, cause then we could just have their square roots as the numerator and denominator😞

  • @mohammadyusufchaudhary7121
    @mohammadyusufchaudhary7121 7 місяців тому

    Bro , √ 2 =

  • @GD-wg4yl
    @GD-wg4yl 7 місяців тому

    My teacher lied...

  • @WilliamWizer-x3m
    @WilliamWizer-x3m 7 місяців тому

    this isn't a perfect proof.
    there's a similar, yet more complete, proof by requiring that the ratio a/b is in simple form. meaning a and b are coprimes.
    it can be proven that both must be even. which is a contradiction.

    • @RunstarHomer
      @RunstarHomer 7 місяців тому

      What is missing from this proof?

    • @hidude1354
      @hidude1354 7 місяців тому

      this is a perfectly fine proof. he hasn't formalized the ending but this is completely valid

  • @nbecnbec
    @nbecnbec 7 місяців тому

    I think it's more intuitive if you take a definition of rationality we are A and B are in lowest terms, similar to the classic proof

  • @rajulsomaiya
    @rajulsomaiya 6 місяців тому

    There is a simpler way to prove

  • @velmrok1660
    @velmrok1660 7 місяців тому

    ( (a-b) + (a-b) )² , you cant do 2(a-b)² xd

  • @DrPillePalle
    @DrPillePalle 7 місяців тому +1

    Beautiful proof but you are going way too fast.

    • @MathVisualProofs
      @MathVisualProofs  7 місяців тому

      yes. hard to get in 60seconds. The linked video is longer and slower. I get to take my time there :)

  • @ytbvdshrtnr
    @ytbvdshrtnr 7 місяців тому

    If √2 is rational it can be written as
    √2 = a/b
    This would make a² = 2b²
    a² would be odd if a is odd so a must be even.
    a² would be divisible by 4 if a is even so b² must be even, so b must be even.
    But if a and b are both even, a/b could be reduced to a fraction where one of them is odd, which wouldn't satisfy a² = 2b².
    Therefore, √2 can't be written as a/b.

  • @salerio61
    @salerio61 7 місяців тому

    I don't like that as a proof

  • @Jivvi
    @Jivvi 7 місяців тому

    If 𝒂 and 𝒃 are the smallest integers for which this is true, then it follows that 𝒃 = 𝒂 - 𝒃 (which is true if 𝒂 = 2𝒃) and also that 𝒂 = 2𝒃 - 𝒂 (which is true if 𝒂 = 𝒃). All of this can only be true if 𝒂 = 𝒃 = 0, so the square root of 2 must be 0.

    • @hidude1354
      @hidude1354 7 місяців тому

      how does it follow that b = a - b?

    • @Jivvi
      @Jivvi 7 місяців тому

      @@hidude1354 If 𝒂 and 𝒃 are the smallest integers for which this is true, and it's also true for the integers (2𝒃 - 𝒂) and (𝒂 - 𝒃), those integers can't be _smaller_ than 𝒂 and 𝒃, because of the first premise, so they must be the same.
      It could also be possible that it's the other way around, so 𝒂 = 𝒂 - 𝒃, and 𝒃 = 2𝒃 - 𝒂.
      But the result is the same, because 𝒂 = 𝒂 - 𝒃 gives us 𝒃 = 0, and 𝒃 = 2𝒃 - 𝒂 gives us 𝒂 = 𝒃.