Amazon Stock Forecasting in PyTorch with LSTM Neural Network (Time Series Forecasting) | Tutorial 3

Поділитися
Вставка
  • Опубліковано 7 кві 2023
  • Thank you for watching the video! Here is the Colab Notebook: colab.research.google.com/dri...
    The Dataset: drive.google.com/file/d/1MqY9...
    Prior Video: • Deep Learning Hyperpar...
    Learn Python, SQL, & Data Science for free at mlnow.ai/ :)
    Subscribe if you enjoyed the video!
    Best Courses for Analytics:
    ---------------------------------------------------------------------------------------------------------
    + IBM Data Science (Python): bit.ly/3Rn00ZA
    + Google Analytics (R): bit.ly/3cPikLQ
    + SQL Basics: bit.ly/3Bd9nFu
    Best Courses for Programming:
    ---------------------------------------------------------------------------------------------------------
    + Data Science in R: bit.ly/3RhvfFp
    + Python for Everybody: bit.ly/3ARQ1Ei
    + Data Structures & Algorithms: bit.ly/3CYR6wR
    Best Courses for Machine Learning:
    ---------------------------------------------------------------------------------------------------------
    + Math Prerequisites: bit.ly/3ASUtTi
    + Machine Learning: bit.ly/3d1QATT
    + Deep Learning: bit.ly/3KPfint
    + ML Ops: bit.ly/3AWRrxE
    Best Courses for Statistics:
    ---------------------------------------------------------------------------------------------------------
    + Introduction to Statistics: bit.ly/3QkEgvM
    + Statistics with Python: bit.ly/3BfwejF
    + Statistics with R: bit.ly/3QkicBJ
    Best Courses for Big Data:
    ---------------------------------------------------------------------------------------------------------
    + Google Cloud Data Engineering: bit.ly/3RjHJw6
    + AWS Data Science: bit.ly/3TKnoBS
    + Big Data Specialization: bit.ly/3ANqSut
    More Courses:
    ---------------------------------------------------------------------------------------------------------
    + Tableau: bit.ly/3q966AN
    + Excel: bit.ly/3RBxind
    + Computer Vision: bit.ly/3esxVS5
    + Natural Language Processing: bit.ly/3edXAgW
    + IBM Dev Ops: bit.ly/3RlVKt2
    + IBM Full Stack Cloud: bit.ly/3x0pOm6
    + Object Oriented Programming (Java): bit.ly/3Bfjn0K
    + TensorFlow Advanced Techniques: bit.ly/3BePQV2
    + TensorFlow Data and Deployment: bit.ly/3BbC5Xb
    + Generative Adversarial Networks / GANs (PyTorch): bit.ly/3RHQiRj

КОМЕНТАРІ • 129

  • @GregHogg
    @GregHogg  11 місяців тому +2

    Take my courses at mlnow.ai/!

    • @Pork-Chop-Express
      @Pork-Chop-Express 11 місяців тому

      Can you create a pandas dataframe with the OHLCV values of just 1 S&P 500 or NASDAQ100 company in Python, and then append the df with ALL the indicators / oscillators / candlesticks from TA, TA-Lib, pandas-TA, and FinTA; then make the df display the % change every day (using 9 day 12 day 26 day 50 75 100 and 200 day windows); and then append the df with the #1 - #9 highest performing indicator / oscillator / candlestick NAME (not the percent) every week / month / 3 months / 6 months / year? So that you're tracking what technical indicator(s) is / are winning the most?

  • @dong1815
    @dong1815 Рік тому

    What timing, Greg! You just published a video I was looking for. Thanks a lot!

    • @GregHogg
      @GregHogg  Рік тому +1

      Not a coincidence, I read your mind!!

  • @alexanderskusnov5119
    @alexanderskusnov5119 Рік тому +41

    It's not a prediction, it is simple lag.

    • @kamakshimanjari9372
      @kamakshimanjari9372 Рік тому +2

      Exactly.

    • @PragyAgarwal
      @PragyAgarwal Рік тому +16

      Everytime a youtuber tries predicting the next day's price using the prev day's price, it conclusively proves that they've no freaking idea about how ML works.

    • @FAHMIAYARI
      @FAHMIAYARI Рік тому +7

      Indeed, I've seen numerous videos and tutorials of LSTM models that perfectly predict the future prices. However, it just predicts the last value and therefore it's as you mentioned, it's a simple lag(1) model. One way to solve this issue is making sure that the data is stationary. One way to do that is predicting the log of the returns instead of the prices.

    • @larenlarry5773
      @larenlarry5773 11 місяців тому +2

      Im new to ML, would you mind to explain further?

    • @cru2426
      @cru2426 10 місяців тому +2

      @@larenlarry5773 Basically using LSTM to predict stocks is just bullshit. If it is that simple, no one lose money.
      One reason behinds is the choice of loss function. either using L1/L2 loss implies the model would try to predict a value close to the actual value.
      In stock data, the yesterday value should be the closest value to today's value (usually). That's why when LSTM predicts today value, the value is just very similar to the yesterday actual value.

  • @arbaazmohammed2041
    @arbaazmohammed2041 Рік тому +3

    Great content here Greg! I had so much to learn from this video, specifically as I coded it along with your video. I also happened to play around with the model architecture and the inputs in terms of trying out a bidirectional LSTM, GRU, increasing sequence length, and by extending the input features by incorporating other columns. Thank you again!

    • @GregHogg
      @GregHogg  Рік тому

      I'm so happy to hear that :) yeah when you allow yourself to really play around with things you can learn a lot :)

  • @googm
    @googm 11 місяців тому +6

    You have an irregularly sampled time series (so under this approach t-7 for one row may actually be 9 days prior). I realize opening that can of worms gets into a whole niche-y area rife with salami slicing publications. But would've been really great to see it addressed with a carry forward or something.

  • @robinkhn2547
    @robinkhn2547 5 місяців тому +1

    Thanks a lot Greg, all your videos on LSTMs are really helping with my Master-Thesis!

    • @GregHogg
      @GregHogg  5 місяців тому +1

      Super glad to hear it!

    • @jackikoch837
      @jackikoch837 Місяць тому

      I'm here for my Bachelors Thesis :D Hope you successfully handed yours in!

    • @robinkhn2547
      @robinkhn2547 Місяць тому

      @@jackikoch837 Yes, I graduated successfully last month! :)
      Much success to you, too! :)

  • @whichdude420
    @whichdude420 Рік тому +1

    Keep it up Greg! Enjoying this series very much 😊

    • @GregHogg
      @GregHogg  Рік тому

      Super glad to hear that 😊

  • @karlbooklover
    @karlbooklover Рік тому +5

    Hi Greg, great content! Just wanted to say that the win-rate is more useful to test if the model is any good, you can calculate the winrate by simply counting how many times the predicted direction (up/down) is correct

    • @GregHogg
      @GregHogg  Рік тому +1

      Sounds good, I'll try that!

    • @henkiespenkie4414
      @henkiespenkie4414 Рік тому

      that is accuracy not winrate. Winrate is how much money you would have won (called backtesting)

  • @MrCelal1998
    @MrCelal1998 7 місяців тому +1

    Hello Greg, nice video its really helping to understand deeply LSTM and PyTorch, I have a one question. If we need to add more than one features to predict what we need to do on lookback ?

  • @pfinbeijing
    @pfinbeijing 7 місяців тому +2

    thank you Greg! I'm curious if you include more parameters in X( training datasets), for example 5 parameters instead of 1 parameter, but also look back 7 days, how to reshape your data input (X_Train) structure? thanks!

  • @evolv_85
    @evolv_85 Рік тому +2

    If you only scale the X data and not the y data, the predictions will be in normal scale and there is no need to perform inverse transform on y_pred. 😀

  • @ArthurRabatin
    @ArthurRabatin Рік тому +2

    Hello, great tutorrial!
    Since you made a comment on the inversion:
    To avoid the workaround with the dummies on the inversion, you will need to create 2 different scalers, one for X and one for y. Then you can separately inverse the scale without the need to create the dummy value matrix.
    Something like this:
    mm_scaler_x = MinMaxScaler(feature_range=(-1, 1))
    mm_scaler_y = MinMaxScaler(feature_range=(-1, 1))
    orig_dataset = create_feature_set_df(ds.df['Close'].to_frame(), LOOBACK_STEPS).to_numpy(dtype=np.float32)
    X_orig = orig_dataset[:, 1:].copy()
    X_orig = np.flip(X_orig, axis=1)
    y_orig = orig_dataset[:, 0].copy().reshape(-1, 1)
    X = mm_scaler_x.fit_transform(X_orig)
    y = mm_scaler_y.fit_transform(y_orig)
    Also, since the dataframes/numpy arrays do not contain objects, it is sufficient to use the numpy or dataframe copy functions (no need for deepcopy).
    Thank you for your great videos! I learn so much from them!

    • @GregHogg
      @GregHogg  Рік тому

      Ah, yes that probably would have been a good idea. Thanks for providing this, I really appreciate it! Cheers :)

  • @user-kt7my6tg5q
    @user-kt7my6tg5q Рік тому +1

    Thank you very much! you are a life saver!!

  • @user-lj2ru5sc6f
    @user-lj2ru5sc6f Рік тому +2

    Thank you for this tutorial. However, I was wondering whether there was a possibility of data leaking from training to testing given that you scaled all the data and then split it.

    • @SevenNationArmy12
      @SevenNationArmy12 Рік тому +1

      Yes, there is. You should fit the scaler on training data, transform the training data, then directly transform the test data without re-fitting the scaler.

  • @kevinkasimov651
    @kevinkasimov651 6 місяців тому

    Very interesting!

  • @xflory26x
    @xflory26x Рік тому

    Why do we need to do the min-max scaling to the data if there is only one feature? Also, why is it necessary that we create a custom dataclass? Can you elaborate on that?

  • @elliotcossins8417
    @elliotcossins8417 4 місяці тому

    Thank you so much I was really struggling figuring out how to format the data to feed into an lstm model in pytorch, this really helped conceptualize it.

  • @e.s298
    @e.s298 8 місяців тому

    Hi Greg, is it ok scaling the entire data? Bcz most of the time we do scale only the train set

  • @ignessrilians
    @ignessrilians Рік тому

    Another amazing guide 👌👏🙏

  • @bigdata9462
    @bigdata9462 Рік тому

    That's impressive. Do you have any plans to upload a model that predicts using the CNN+LSTM(ConVLSTM) technique?

    • @GregHogg
      @GregHogg  Рік тому

      No, but maybe I should!

  • @BaoTran-jo8lj
    @BaoTran-jo8lj 9 місяців тому

    Hi Greg, what a great video! I wonder if I have another type of time series, say youtuber's income with new videos before they uploading it. Could I build a prediction model for all youtubers with 1 model only like yours, or I have to build one for each? And If I would need only 1 model, how do I achieve it? Will the youtubers' name be in the input?

  • @grand9757
    @grand9757 9 місяців тому

    Thank you very much for the clear instructions!
    Thanks to you, I launched my first neural network!
    Greetings from Russia :)

    • @GregHogg
      @GregHogg  9 місяців тому +1

      Greetings! Glad to hear it 🙂🙂

  • @otaviocoutinho2855
    @otaviocoutinho2855 Рік тому +2

    Im getting a little confused in how would you apply te model to actually predict days ahead in the future, since in this LSTM the future days are not in the dataframe. I imagine a non trivial implementation so the model takes always the last days available.
    Could anyone give a hand with that?

    • @qazyip
      @qazyip Рік тому

      I'm also wondering about this. Given the lookback, the model should be able to predict the lookback days in the future. How can I implement the model to find the predicted price target?

  • @loveUbleach4ever
    @loveUbleach4ever Рік тому +1

    Keep it up Greg! I really enjoy your videos and your way of teaching is way better than i ever could do and I am in my PhD, reach out to me if you like to share more ideas, I have some ideas that I will like to run it by you.

    • @GregHogg
      @GregHogg  Рік тому

      That would be great, thanks so much!

    • @loveUbleach4ever
      @loveUbleach4ever Рік тому

      @@GregHogg thanks man, I dropped an inbox on your email, please check inbox/spam

  • @eaglecc6149
    @eaglecc6149 Рік тому

    Thank you very much for your video, I have a question:
    In your video, it seems that the data only predicts one point in the future, if I want to predict 100 points or more in the future, what do I do?

    • @GregHogg
      @GregHogg  Рік тому

      You could do that by recursively making the lastest prediction the latest input

  • @NIls-nt1es
    @NIls-nt1es 8 місяців тому

    Hi Greg, nice video!
    Is there any risk of data leakage in your train and validation setup?

    • @NIls-nt1es
      @NIls-nt1es 7 місяців тому

      As soon as you start run your model on X_test => model(X_test.to(device)).detach().cpu().numpy().flatten() dont you have the Lags in the test data resulting in a information leakage?

  • @Sccoropio
    @Sccoropio 7 місяців тому +4

    how can i use this to predict next week's prices?

  • @abiagarwal2966
    @abiagarwal2966 Рік тому +2

    so how does the graph work?
    how do I test the data for future? I don't have the actual future data, this makes sense fir backtesting, but what about for forecasting?

    • @user-dl6lq7mr1k
      @user-dl6lq7mr1k 2 місяці тому

      I have the same question and in several guides doesn't explain it :(

  • @waitingonacheck7795
    @waitingonacheck7795 8 місяців тому +1

    Y’all know that this is just an overblown arima model.. with no predictors other than error terms in the series. Where did you evaluate model performance on out of time data? What’s the conclusion here? What lag was best? This isn’t predictive it’s explanatory analysis

  • @ta-weichou9518
    @ta-weichou9518 11 місяців тому +1

    Hi Greg, Does the MinMaxScaler you've done on the whole dataset cause information leakage?

    • @shikamaruuzumaki-ov2zd
      @shikamaruuzumaki-ov2zd 3 місяці тому

      yes it should do that , i was wondering the same thing

    • @Dad-rk8pi
      @Dad-rk8pi 3 місяці тому

      Yes, it would. You need to first split and then scale not scale and then split

  • @erx88
    @erx88 10 місяців тому

    Everything worked until you run the batch process...
    Running on the most current version of Python 3.11...
    This is the error it shows :
    "NotImplementedError: Module [LSTM] is missing the required "forward" function"
    Getting the same error on the Colaboratory notebook as well...? Thanks for clearing that up in advance...
    -ER x

  • @pauleasther
    @pauleasther Рік тому

    Could you use your methodology to identify candle stick patterns and assess their reliability in predicting future price direction?

    • @GregHogg
      @GregHogg  Рік тому

      Only one way to find out

    • @metehan9185
      @metehan9185 7 місяців тому

      No you can't this Methode only predicts the price from the past

  • @udaynj
    @udaynj 19 днів тому

    Did you need to take the dataframe and put into numpy and then move to a tensor? Why not just go straight to a tensor?

  • @ChristosKaskouras
    @ChristosKaskouras 10 місяців тому

    Hi Greg, I have watched a lot of videos about the specific topic and this is one of the greatest, especially of the way you presenting it. I have a similar problem and I would like to know if you can help me on how to modify your code or refer me to another source. I want to simulate an optimization algorithm which uses a timeseries to predict another one. I found the concept of using the last 7 observation extremely useful, but in my case it would be great if I can use the last outcome as input for the following prediction. Do you gave any ideas on that?

    • @comunedipadova1790
      @comunedipadova1790 9 місяців тому

      what other videos do you suggest on this topic?

    • @qinhuajiang4006
      @qinhuajiang4006 6 місяців тому

      I think this is called Autoregression

  • @jogon9649
    @jogon9649 Рік тому

    Hey Greg could you do something similar using chat gpt or an ai program

  • @mpfiesty
    @mpfiesty 6 місяців тому

    Do you have a document that describes all of the terminology you’re using?

  • @maciejkolibabski7491
    @maciejkolibabski7491 5 місяців тому

    Hi Greg, could you create a video how to predict stock prices with Transformer Neural Networks ?

  • @blastbuilder2430
    @blastbuilder2430 4 місяці тому

    I don't get why people always use unpredictable numbers like stock prices and sunspots to demonstrate neurol networks. You can't tell how good or bad the results are. It makes much more sense to use predictable data so we know which model works better for which types of data.

  • @robinbjoernplatte1822
    @robinbjoernplatte1822 Рік тому

    How would you build this model if you had more than one input?
    Like Close and Volume.
    Instead of having a 1x7 matrix youd have a 2x7 matrix.
    How would you throw this into the model?

    • @davefaulkner6302
      @davefaulkner6302 8 місяців тому +1

      My uneducated guess: the LSTM definition includes input size, change that to 2. Normalize the volume data to [-1,1] as was done for the price data. Create Volume sequences the same way as the Price sequences and use this as training data. Since only Price is predicted, no change to the Y (ground truth) vector is needed. This is an important question in real world scenarios as Volume is a strong indicator of movement and momentum.

  • @epiccabbage6530
    @epiccabbage6530 2 місяці тому

    Are h0 and c0 the intial input and forget gate tensors?

  • @damonpalovaara4211
    @damonpalovaara4211 Місяць тому

    @19:20 Can somebody explain to me what out[:, -1, :] does. I'm trying to learn the burn crate for Rust which is young and doesn't have enough documentation so I'm stuck referencing pytorch which is it's influence.

  • @jinli1835
    @jinli1835 Місяць тому

    Why there are only training and testing dataset? Is validation dataset necessary?

  • @bubblecast
    @bubblecast Місяць тому

    Seems to me the plot will always look good because the previous close is already the input :(

  • @VicRejkia
    @VicRejkia 3 місяці тому

    Thanks for the tutorial, really helpful. If I run it on G_colab it is working but not on my local machine. It will always error out on the validation function with the error: For unbatched 2-D input, hx and cx should also be 2-D but got (3-D, 3-D) tensors. Do you have any idea why?

    • @GregHogg
      @GregHogg  3 місяці тому

      Probably a pip package nightmare haha sorry about that

  • @sebcodestheweb9385
    @sebcodestheweb9385 7 місяців тому +1

    Lol this video is the definition of "Trust me bro"

  • @gamuchiraindawana2827
    @gamuchiraindawana2827 6 місяців тому

    Let's goooooooooooo Greg!

  • @k2icc
    @k2icc Рік тому

    Regardless of what value I put on the lookback, calling the function just gives me Close and Close(t-1) only.

    • @GregHogg
      @GregHogg  Рік тому +1

      I probably hard-coded a typo then

    • @k2icc
      @k2icc Рік тому

      @@GregHogg Or I was the typo expert. Copied from Colab then all working fine. Thanks.

  • @machib77
    @machib77 Рік тому +1

    great video, buy why didn't you took advantage of that green screen? 😅

    • @diusepausm
      @diusepausm 5 місяців тому

      perhaps he won't his vid took by mr green for sample

  • @nataliaandreavalenciafajar9200
    @nataliaandreavalenciafajar9200 4 місяці тому

    Hello. I am an Engineering student, I am developing a project where I have data from 167 patients. For each patient I have a dataframe with 60 columns (characteristics) and 5000 rows. Each row corresponds to a time of 60 seconds. I cannot put the data of all the patients together in a single dataframe and randomly extract a percentage to train and test. What I want to do is pass that to a CNN or LSTM but take into account that they are different patients, I thought I should fix that in a three-dimensional matrix where the depth is the patients, but I don't know if that is correct and I don't know either. how to do it. I also have the ID of each patient but I don't know how to use that information. Each patient dataframe has a column at the end that is the target, the signal that I want to predict. Please could you help me and explain to me?

  • @alexanderskusnov5119
    @alexanderskusnov5119 Рік тому

    Your features (Close) are reversed in time. Is it good for LSTM?

  • @nazarmohammed5681
    @nazarmohammed5681 2 місяці тому

    How to implement this end to end in fastapi plz make a video

  • @ayansrivastava731
    @ayansrivastava731 10 місяців тому

    why are you shuffling the data by setting shuffle =True? in time series this isn't allowed right?

    • @ayansrivastava731
      @ayansrivastava731 10 місяців тому

      also by converting to tensors, you're losing precision - when data is already so closely spaced, losing precision is NOT a good idea

  • @juanitovilla100
    @juanitovilla100 10 місяців тому

    Tell me you did look ahead bias without doin so.

  • @GohOnLeeds
    @GohOnLeeds 7 місяців тому +1

    The blind leading the blind 🙂

  • @learn_techie
    @learn_techie Рік тому

    Can you explain why every content on Tensor Flow is shitting image recognition? And if we want to build visualization , data pipeline, real time cluster and decision making ? Shall I go with Pytorch? I guess tensor flow either don't has utility for numbers?

  • @Zeeshan_293
    @Zeeshan_293 2 місяці тому

    How to prediction on gold chart

  • @aarondelarosa3146
    @aarondelarosa3146 Рік тому

    "np.zeros" is not defined. How can you fix it?

    • @lucaslittle3297
      @lucaslittle3297 10 місяців тому +1

      just to be sure... Check if you are import numpy as np
      import numpy as np

  • @Smarttradingchannel
    @Smarttradingchannel Рік тому +1

    😀 it doesn’t fit at all
    I think you had to cut all the old small prices and keep only 5 or 6 years ago
    Traning the model on 1/2 $ to predict 100$ it’s not good at all
    Also I didn’t see any dense layer for aggregating outputs

  • @Tony-cg5it
    @Tony-cg5it 6 місяців тому

    Why is the batch loop 15:10 an enumeration just to throw away the integer? I'm not sure this guy knows what he's doing.

  • @AnuarUten
    @AnuarUten 8 місяців тому

    How to assess its performance by MAE and MSE?

    • @GregHogg
      @GregHogg  8 місяців тому

      You can definitely calculate the Mae and mse

  • @kirwakelvinkering3122
    @kirwakelvinkering3122 9 місяців тому

    Where is the LSTM version of this video from tensorflow ?

    • @GregHogg
      @GregHogg  9 місяців тому

      It's... Somewhere!

  • @mikeygifford
    @mikeygifford 6 місяців тому

    So what you want to predict is the first row of the tensor?

  • @qaz56q
    @qaz56q 8 місяців тому

    The prediction result looks incorrect; If you look closely, as you can see in the last graph, the prediction is our actual with a shift of 1.

    • @GregHogg
      @GregHogg  8 місяців тому

      Yep sorry there was an error

    • @rijojose360
      @rijojose360 4 місяці тому

      Could you please fix it?
      @@GregHogg

    • @teodoranasz3531
      @teodoranasz3531 2 місяці тому

      @@GregHogg so how do we stop the model from doing the shift thing? I'm having the same issue with a time series of energy prices.

  • @Mannnee
    @Mannnee 2 місяці тому

    Are you PewDiePie's brother?

  • @TerritOrially
    @TerritOrially 5 місяців тому

    🎯 Key Takeaways for quick navigation:
    00:00 🌟 *Introduction to LSTM stock forecasting with PyTorch*
    - Overview of the tutorial's goal to teach LSTM stock forecasting using PyTorch.
    - Mention of key libraries and tools: pandas, numpy, matplotlib, and PyTorch.
    02:02 📊 *Data Preparation and Analysis*
    - Loading and examining Amazon's stock history data, focusing on the closing value.
    - Explanation of stock value adjustments like splits to maintain comparison standards with other companies.
    04:08 🔧 *Preparing Data for LSTM Input*
    - Transformation of the dataset to include historical closing values for prediction.
    - Setup for using GPUs in PyTorch for model training and explanation of data preprocessing steps, including normalization.
    06:25 💻 *LSTM Model Setup and Training Preparation*
    - Detailed walkthrough of setting up the LSTM model in PyTorch, including creating custom dataset classes and data loaders.
    - Explanation of splitting the dataset into training and testing sets, and preparing the data for the LSTM model with appropriate reshaping and normalization.
    16:49 🤖 *LSTM Model Configuration and Initialization*
    - Explanation of LSTM model structure, including input size, hidden layers, and the fully connected layer.
    *- Focus on closing value as the single feature for prediction.*
    *- Use of a single stacked LSTM layer to avoid overfitting.*
    19:34 🛠️ *Training Loop Setup and Execution*
    - Setup for training and validation loops, including specifying learning rate, epochs, and the mean squared error loss function.
    *- Introduction of custom functions for training and validation processes.*
    *- Discussion on the importance of loss function choice and optimizer settings.*
    24:09 📉 *Prediction and Plotting*
    - Generating predictions from the trained model and plotting against actual values.
    *- Process for converting model predictions back to original scale for meaningful comparison.*
    *- Visualization of model performance on training data.*
    28:32 🔍 *Evaluation and Final Thoughts*
    - Evaluation of model performance on test data and final remarks on stock forecasting.
    *- Emphasis on the complexity and challenges of accurate stock prediction.*
    *- Advice against over-reliance on model predictions for stock trading decisions.*
    Made with HARPA AI

  • @amalhanaja
    @amalhanaja 3 місяці тому

    10:34 Fix

  • @magnuslysfjord423
    @magnuslysfjord423 4 місяці тому

    I think this video should be re-done! The instructions are vague and the results are obviously erroneous, not just in strategy but in the implementation.
    Otherwise, great content and explanation

  • @alexCh-ln2gw
    @alexCh-ln2gw 5 місяців тому

    hrm. another lagging indicator.

  • @lilunchengsmiles
    @lilunchengsmiles 9 місяців тому +1

    Cease producing videos on stock predictions as they may be misleading and primarily serve to boost viewership rather than provide valuable information.

    • @GregHogg
      @GregHogg  9 місяців тому +1

      No

    • @lilunchengsmiles
      @lilunchengsmiles 9 місяців тому +1

      @@GregHoggI suggest use proper use case for LSTM. Stock price prediction is not the one and someone may actually use it for making financial decisions. The actual financial assets forecasting is much much more complicated.

  • @jakob4371
    @jakob4371 5 місяців тому

    This dude clearly knows nothing about the topic he is teaching lol

  • @dmtree__
    @dmtree__ 2 місяці тому

    Yet another LSTM stock prediction tutorial making the same min/max scaling mistake. Yawn.
    /watch?v=lhrCz6t7rmQ