Naive Bayes Theorem | Maximum A Posteriori Hypothesis | MAP Brute Force Algorithm by Mahesh Huddar

Поділитися
Вставка
  • Опубліковано 9 лют 2025
  • Naive Bayes Theorem | Maximum A Posteriori Hypothesis | MAP Brute Force Algorithm by Mahesh Huddar
    Bayes theorem is the cornerstone of Bayesian learning methods because it provides a way to calculate the posterior probability P(h|D), from the prior probability P(h), together with P(D) and P(D(h).
    The learner considers some set of candidate hypotheses H and is interested in finding the most probable hypothesis h ϵ H given the observed data D (or at least one of the maximally probable if there are several).
    Machine Learning - • Machine Learning
    Big Data Analysis - • Big Data Analytics
    Data Science and Machine Learning - Machine Learning - • Machine Learning
    Python Tutorial - • Python Application Pro...
    naive bayes theorem in machine learning ,
    naive bayes theorem,
    naive bayes theorem in data mining,
    naive bayes theorem probability,
    naive bayes theorem in dwdm,
    naive bayes theorem explained,
    naive bayes rule example,
    naive bayes rule,
    maximum a posteriori estimation,
    maximum a posteriori hypothesis,
    maximum a posteriori (map) estimation,
    maximum a posteriori vs maximum likelihood,
    maximum a posteriori (map),
    maximum a posteriori machine learning,
    brute force map learning algorithm,
    brute force map hypothesis,
    brute force vs irradiance map

КОМЕНТАРІ • 27

  • @snehagowda1082
    @snehagowda1082 4 роки тому +120

    I will forward this video to our ML sir, so tht he may learn few ML concepts atleast

  • @codeindia4730
    @codeindia4730 3 роки тому +7

    Thank You sir. Got Many ML Jargons Cleared Only Bcz of Your Videos.

  • @ARKPROCODER
    @ARKPROCODER 4 роки тому +15

    I saw your whole playlists it was very helpful for my ML Exam all concepts covered with great explaination thank you

  • @meshackamimo1945
    @meshackamimo1945 5 місяців тому

    Prof, kindly do a lecture in kalman filters as used in time series analysis

  • @meshackamimo1945
    @meshackamimo1945 5 місяців тому

    Or bayesian filters as may be used in time series analysis

  • @jevigudaganavar4258
    @jevigudaganavar4258 2 роки тому +1

    Naive Bayes classifier can be considered as a ranking classifier. What does this mean?

    • @devanshdalwadi6015
      @devanshdalwadi6015 2 роки тому

      ig it si calssifier to your distribution as a normal distribution

  • @CSEKailashPaswan
    @CSEKailashPaswan Рік тому

    sir ,
    notes