The ALMOST Perfect Numbers

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 206

  • @Kuvina
    @Kuvina  3 місяці тому +111

    BREAKING NEWS
    After 6 years, a 52nd Mersenne prime has been found, which means there is also a 52nd perfect number!
    I hope you like numbers because this video is extremely mathy! Thank for the patience awaiting the new video as I've been busy irl. I hope you enjoy!

    • @lucapri
      @lucapri 3 місяці тому +1

      is there a tl;dr for this

    • @Kuvina
      @Kuvina  3 місяці тому +17

      tl;dr numbers with funny properties

    • @lucapri
      @lucapri 3 місяці тому

      @@Kuvina a little bit more longer

    • @CFGalt
      @CFGalt 3 місяці тому +2

      Heck yeah! Numbers! :D
      (Of course I love numbers, why do I think I’m subscribed to this channel??)

    • @decoherence30
      @decoherence30 3 місяці тому

      @@Kuvinanumbebbesbrs

  • @Saiyana
    @Saiyana 3 місяці тому +319

    Parker Perfect Numbers

    • @ExzaktVid
      @ExzaktVid 3 місяці тому +32

      Parker odd perfect numbers are actually even perfect number

    • @jeem2k
      @jeem2k 3 місяці тому +2

      YES

    • @legohead2731
      @legohead2731 3 місяці тому +3

      Leave him alone already

    • @EmpinadoMaxbmdggTheSun
      @EmpinadoMaxbmdggTheSun 3 місяці тому +3

      Omg you're so right. That, like, the funniest math joke I know and I'm actually sad that I see it so so rarely

    • @NeuroKytsh
      @NeuroKytsh 3 місяці тому

      booooo get new material

  • @Person.1234
    @Person.1234 3 місяці тому +56

    I love how the ending "bye!" was timed and in-tune

  • @feelshowdy
    @feelshowdy 3 місяці тому +29

    Ok, the part about Sublime numbers actually blew my mind. I have a newfound appreciation for 12 and its Sublime sibling.

    • @wibbliams
      @wibbliams 3 місяці тому +1

      12 is a great number

  • @marcfelipeialsina7074
    @marcfelipeialsina7074 3 місяці тому +78

    I once saw someone writing a code to determine if n was a perfect number. The code computed σ(n) by checking all numbers d up to the square root of n, and adding d and n/d to a total whenever d divided n.
    However, when n=N² is a perfect square, the divisor d=N was not included in the sum (due to a < sign), and instead of comparing 2N² with σ(N²), the code was comparing it with σ(N²)-N.
    I coined the false positives that the code may yield (which are a very niche subset of the near-perfect numbers) as PSEUDOPERFECT numbers.
    I told the person who wrote the code that it was flawed. However, I was unable to find a counter-example. Over the years, I have checked up to n=458,335,615,276,564,171,975,521 (inclusive) without finding a single pseudoperfect number, but I can't discard that they exist.
    I would love to know whether they exist, because even though it's been almost 10 years, if it turns out that pseudoperfect numbers don't exist, then the code would be valid and I should apologize to that person.

    • @Kuvina
      @Kuvina  3 місяці тому +29

      That's actually exactly how my own code works! Well except for the fact that I preemptively realized not double count sqrt(n) in those cases.

    • @P-7
      @P-7 2 місяці тому +3

      I did some work on this problem. It’s well known that square numbers can’t be perfect numbers, so any square returned by the algorithm would be wrong. This is because you get (even) 2N^2 = (odd) σ(N^2). For the algorithm to return a false result, we need 2N^2 = σ(N^2) - N, which would require N to be odd to make the whole expression even. Also, we can rearrange to get 2N^2 + N = σ(N^2), or N(2N+1) = σ(N^2) for some odd N. This tells us that N | σ(N^2) and 2N+1 | σ(N^2). This last statement may lead to a contradiction, proving the algorithm always works, but my number theory is rusty so I’ll have to stop here

    • @deleted-something
      @deleted-something 25 днів тому +2

      Thanks for the (inclusive)

  • @spenjaminn3846
    @spenjaminn3846 3 місяці тому +9

    Some other ones I’ve came up with (others probably have found these as well):
    Barely Abundant: A number N whose aliquot sum equals N+2. The ones under 2000 are 20, 104, 464, 650, and 1952, all of which are primitive abundant as well.
    Barely Deficient: A number N whose aliquot sum equals N-2. The only ones under 2000 are 3, 10, and 136.
    and for a silly one:
    Perfectly Scrambled: A number whose aliquot sum is an anagram of itself. All perfect numbers are trivially perfectly scrambled, and the only other ones I found under 1000 are 411 and 604, with aliquot sums of 141 and 460 respectively.
    (note that these were all found by me manually looking through a list of aliquot sums rather than by using a computer to search for them, so I might have missed some)

    • @Kuvina
      @Kuvina  3 місяці тому +2

      That's so cool! And I like the names

    • @ValkyRiver
      @ValkyRiver Місяць тому +1

      It's worth noting that Perfectly Scrambled is base-dependent. If you used a different number base, then the list of Perfectly Scrambled numbers would be different.

  • @legendgames128
    @legendgames128 3 місяці тому +34

    The Aliquot sequence, and how 276 seems to diverge, reminds me of the Collatz Conjecture...

  • @XorbityXorbGlowbe
    @XorbityXorbGlowbe 29 днів тому +4

    Kuvina is Anti Jan-Misali.
    Black Sans Serif on a White Background with plenty color
    Instead of White Sans Serif on a Black Background with little to no color

  • @YellowBunny
    @YellowBunny 3 місяці тому +37

    That sublime number in the end was the most interesting piece of information in this video to me.

  • @HipsterShiningArmor
    @HipsterShiningArmor 3 місяці тому +4

    besides how every power of 2 is an almost perfect number, there is another interesting pattern regarding perfect powers and aliquot sums that I don’t often see talked about. Namely, the aliquot sum of any power of 3 will be (n/2)-1/2. See how the aliquot sum of 3 is 1, 9 is 4, 27 is 13, 81 is 40, and so on. Or, put another way, the aliquot sum of a power of 3 is always half of itself, rounded down to the nearest whole number

  • @nanothrill7171
    @nanothrill7171 3 місяці тому +4

    i love how many people in comments engage with the math, but i can't engage too deeply with it. I just enjoy listening to you talk, it's very brain-aligning.

  • @Inspirator_AG112
    @Inspirator_AG112 3 місяці тому +13

    I noticed this video's length is perfectly round... (:

  • @vitex198
    @vitex198 3 місяці тому +21

    I'd like for 22021 to be prime but unfortunately 19 is my favorite number and I cannot allow it to get removed from existence

  • @bastianrevazov7425
    @bastianrevazov7425 3 місяці тому +3

    very educational
    or not
    now im just filled with next to useless information about imperfect numbers
    not in a bad way, i love the video :)

  • @DissonantSynth
    @DissonantSynth 3 місяці тому +5

    Always love your videos. Very high quality and a lot of passion and love is put into them. Thanks for sharing your passion with us other math lovers.

  • @NimArchivesYT
    @NimArchivesYT 3 місяці тому +39

    Collatz conjecture flashbacks

  • @denpadolt9242
    @denpadolt9242 3 місяці тому +14

    I love this channel for how effectively it captures the joys and beauties of math without becoming suffocatingly academic or high-level. Other videos in SoMEpi are like "Here's how to factorize these functions in a weird way," "Here's what you can do with higher-dimensional math," "Look at this cool high-level maths theorem that involves calculus!" And then this channel is all about the simpler stuff like emergent properties of numbers themselves, or polyhedral properties.
    It's not less mathy for it, but it is more... playful. It's the kind of math you'd discover for yourself, rather than having it taught to you.

  • @appybane8481
    @appybane8481 3 місяці тому +7

    This year(2024) is actually a Quasi aliquat perfect number (see 15:08)

  • @Zachariah-Abueg
    @Zachariah-Abueg Місяць тому +2

    i always look forward to your videos. you're so fun and i like the clarity with which you teach concepts - i appreciate that you don't skip steps and are very explicit when you introduce a new idea or show a step-by-step process. also you're just a delight to listen to. also i loved the "one" counter - you're very funny. love your videos, you may be my favorite math content creator

    • @Kuvina
      @Kuvina  Місяць тому +2

      thank you! you're the first one to leave a comment about the 1 counter!

    • @Zachariah-Abueg
      @Zachariah-Abueg Місяць тому +1

      @@Kuvina WHAT! no way! i can't believe that. no way at all. NO ONE has mentioned it??? that's maybe one of my favorite things LMFAO

  • @ania54
    @ania54 3 місяці тому +27

    Why didn't UA-cam send me a notification about a video by one of my favourite creators??

    • @mr.duckie._.
      @mr.duckie._. 3 місяці тому +1

      did you hit the bell icon

    • @ShadowStray_
      @ShadowStray_ 3 місяці тому +2

      Make sure the notifications are on “all” instead of “personalized”

    • @mertatakan7591
      @mertatakan7591 3 місяці тому +1

      Maybe because you didn't subscribe? It doesn't always send notifications when you don't subscribe. Also make the settings "all" and not "personalized" or "none".

  • @DanDart
    @DanDart 3 місяці тому +3

    I've done this recently, ignoring 1 as a prime, and have come up with weird things, and found out about betrothed numbers in that adventure.

  • @Boxytablet
    @Boxytablet 3 місяці тому +27

    2:23 oh no you have summoned the gen alpha kids

    • @Fleecy_wurmple
      @Fleecy_wurmple 3 місяці тому +1

      Fr

    • @cameronbigley7483
      @cameronbigley7483 3 місяці тому +7

      So help me, if I see any "skibbidi toilet" numbers, there's gonna be a revolutionary advancement in war crimes.

    • @user_cy1er
      @user_cy1er 3 місяці тому +2

      would try to send them into the imaginary realm

    • @skippitysmithsonshorts
      @skippitysmithsonshorts 3 місяці тому +5

      Imagine:
      Womp womp numbers
      Gigachad numbers
      Based numbers
      Fries in the bag numbers
      Lil bro numbers
      Alpha numbers
      Gyatt numbers
      Rizz numbers
      Ohio numbers
      Slay numbers
      Preppy numbers
      Oiled up numbers
      Caked up numbers
      Clapping numbers
      Mewing numbers

    • @1974kham
      @1974kham 3 місяці тому +1

      @@skippitysmithsonshorts NAH XDXDXD

  • @MatthewConnellan-xc3oj
    @MatthewConnellan-xc3oj 3 місяці тому +9

    Which of these types of numbers do you like the best?

    • @Kuvina
      @Kuvina  3 місяці тому +10

      multi perfect!

  • @VortexLyte
    @VortexLyte 2 місяці тому +1

    your videos are very relaxing

  • @Cicksavant
    @Cicksavant 3 місяці тому +3

    I’d like to say I understand all of this but, my brain exploded trying to understand it XD.

  • @ishu4227
    @ishu4227 3 місяці тому +5

    it has onnly 2007 view it deserves more

    • @ishu4227
      @ishu4227 3 місяці тому +2

      now 2015

  • @kiti_cat524
    @kiti_cat524 3 місяці тому +3

    0:15 the 8th: 2.31 quintillion
    the 9th: 2.66 undecillion

  • @Fabiototo1
    @Fabiototo1 2 місяці тому +3

    It feels odd that we are stuck on the 276 aliquot sequence, with modern computing it feels like we should just be able to crank that out

  • @geekjokes8458
    @geekjokes8458 3 місяці тому +2

    oh yeah, i remember the WILD RIDE that was that numberphile video

  • @mrhangertv1829
    @mrhangertv1829 3 місяці тому +2

    I actually found a Unitary Sociable Loop of 3 (30,42,54) and 2 Unitary Aspiring Numbers before reaching the Unitary Perfect Number 90 (66,78,90)

    • @mrhangertv1829
      @mrhangertv1829 2 місяці тому

      HE HEARTED MY COMMENT! Also, 100 is the only number between 1-100 that is socially aspiring (100,30,42,54)

    • @m_affiliates
      @m_affiliates 2 місяці тому

      @@mrhangertv1829kuvina uses they/them

  • @AbdullahCumhur
    @AbdullahCumhur 3 місяці тому +7

    This video is almost perfect.

  • @palladianaltruist8047
    @palladianaltruist8047 2 місяці тому +2

    I was literally looking for a video just like this. I saw a post the other day asking "what three numbers sum and multiply to the same value?" And immediately i thought "well it's 1, 2, and 3 that they want, but I wonder if there are any sort of non-integer answers to this question."

  • @michaelbennett5568
    @michaelbennett5568 2 місяці тому +2

    Amicable numbers are my favorite

  • @MinhAIPet
    @MinhAIPet 28 днів тому +2

    Perfect number = Almost quasi perfect number.

  • @eqeeaead2799
    @eqeeaead2799 3 місяці тому +3

    The perfect video.... 30 minutes exact

  • @lailoutherand
    @lailoutherand 3 місяці тому +7

    3:20 The brainrotted will only notice sigma.

  • @Eyad_Negm
    @Eyad_Negm 3 місяці тому +2

    I wish if there a number that is perfect in all these ways combined

  • @giovannicorso7583
    @giovannicorso7583 3 місяці тому +5

    ... but I still prefer 37.

  • @qubyy1714
    @qubyy1714 3 місяці тому +3

    Hey mom wake up, new kuvina video dropped

  • @WangleLine
    @WangleLine 3 місяці тому +9

    I love your videos so much

  • @Error422win
    @Error422win 9 днів тому +1

    I feel like we shroud call the Descartes’ number and all numbers like it “tarnished numbers”

  • @AOOA926
    @AOOA926 3 місяці тому +7

    No way Kuvina uploaded!

  • @pascalochem4256
    @pascalochem4256 3 місяці тому +1

    Great Video. Thank you

  • @idonothavealife
    @idonothavealife 3 місяці тому +5

    New Kuvina Saydaki video, life finally has a meaning

  • @jayktomaszewski8738
    @jayktomaszewski8738 3 місяці тому +2

    I wonder if the OEIS has a name for the sociably aspiring numbers

  • @coopergates9680
    @coopergates9680 3 місяці тому +1

    20:13 Have you also played with quasi solitary and quasi friendly numbers? The obvious case is that all the primes would form an infinite club with quasi index 1, but the other figures' patterns could change a lot.
    Plenty of fun in this video and the first time I've seen log(log(n)) scaling. Lol

  • @deleted-something
    @deleted-something 25 днів тому +1

    Pretty cool!

  • @josueantovani8019
    @josueantovani8019 3 місяці тому +3

    the colours are always arranged into the lgbt flag sequence, awesome

    • @burner555
      @burner555 3 місяці тому +2

      Sorry to burst your bubble, but rainbows have been arranged like this way before the become a queer symbol

    • @josueantovani8019
      @josueantovani8019 3 місяці тому +3

      @@burner555 I know, im just saying that cause kuvina is enby (non-binary), and that makes sense. That yeah, i know that, the rainbow existed way before any queer symbol, way before humanity actually lmao xD
      But anyways, i get what you're saying, and also... Dont think you're being hateful, or a bigot. You're saying facts and truths, so dont be afraid to stand to your facts!
      Cheers, hope you have a nide day!

  • @megamasterbloc
    @megamasterbloc 3 місяці тому +3

    is there any number whose number of step in it's aliquot sequence to reach a prime/perfet/amicable/sociable number is itself a perfect number or itself ?

  • @higgsinvestigations
    @higgsinvestigations 3 місяці тому +2

    The Archimedean perfect numbers
    The negatives will be called the Catalans

  • @3141minecraft
    @3141minecraft 3 місяці тому +3

    When is the next relativity video?

  • @cabiria0
    @cabiria0 2 місяці тому

    Please please slow down and make separate videos for each kind of number. Otherwise u are almost perfect❤️👏

  • @ItsFoxPlays3
    @ItsFoxPlays3 Місяць тому +1

    I feel so σ!

  • @notyourfox
    @notyourfox 3 місяці тому +2

    from 28:10 it sounds like an illuminati presence proof

  • @CYGO4807
    @CYGO4807 3 місяці тому +2

    gg kuvina is back

  • @TaxEvasion1452
    @TaxEvasion1452 3 місяці тому +3

    Here before Gen Alpha starts joking about the sigma function

    • @NocturnalTyphlosion
      @NocturnalTyphlosion Місяць тому

      gen alpha arent going to be here theyre like 11 years old they dont care

    • @TaxEvasion1452
      @TaxEvasion1452 Місяць тому

      @@NocturnalTyphlosion almost forgot that gen alpha can’t read. Thanks for the reminder

  • @lock_ray
    @lock_ray 3 місяці тому +2

    I will make it my life mission to find 10 a friend

  • @LoganCarlson-o6w
    @LoganCarlson-o6w 2 місяці тому +2

    2:23 is sussy

  • @jisvngiez
    @jisvngiez 2 місяці тому +2

    ‘the sigma function’
    **sighs**
    **opens comments**

    • @NotLobotomy
      @NotLobotomy 2 місяці тому

      Sigma is a greek letter, not ur brainrot version

  • @Frddy_-sh8so
    @Frddy_-sh8so 3 місяці тому +4

    it´s some math

  • @sabarinaskar4690
    @sabarinaskar4690 3 місяці тому +2

    aspiring infinitism

  • @MichaelDarrow-tr1mn
    @MichaelDarrow-tr1mn 3 місяці тому +4

    what about: antiperfect numbers. aka primes

  • @derekky1039
    @derekky1039 3 місяці тому +1

    In the section “Quasi perfect” ( 6:06 ) you defined a quasi perfect number as s(n) = n - 1, but in the section “Almost perfect” ( 8:11 ) you defined quasi perfect numbers as s(n) = n + 1. Which one is it?

    • @Kuvina
      @Kuvina  3 місяці тому +1

      Quasi perfect numbers are s(n)=n+1. They can alternatively be defined as n=s(n)-1, which is how I define them in the first section

  • @HipsterShiningArmor
    @HipsterShiningArmor 3 місяці тому +2

    another fun fact about 70: on top of being a weird number, its also the smallest abundant number that's divisible by neither 4 nor 6. ofc any multiple of 6 is automatically abundant, and while multiples of 4 can be deficient they have a pretty high chance of turning out to be abundant, so its pretty rare, especially among 2 or 3 digit numbers, to see an abundant that has neither as a factor. 70 is the first; the second and third are unsurprisingly 350 and 490; multiples of 70. im not sure yet if 770 is the fourth or if there's one or more in between.

    • @redpepper74
      @redpepper74 3 місяці тому +1

      There are actually 2 in between, 550 and 650.
      The first few are: 70, 350, 490, 550, 650, 770, 910, 945.
      Then 88 of them have 4 digits, 830 have 5 digits, and 8502 have 6 digits.
      Seems like a solid 9/1000 numbers have this property.

    • @HipsterShiningArmor
      @HipsterShiningArmor 3 місяці тому +1

      ​@@redpepper74 thank you. unsurprising that theyre almost all multiples of 10. also interesting how theres several multiples of 50 here, and then they just stop: 850 and 950 are both deficient. and yes, 945 is quite literally the odd one out here.

  • @user-xy5yg6se1k
    @user-xy5yg6se1k 13 днів тому +1

    19:43 when did she explain what "weird" numbers are?

  • @MinecraftBenYT
    @MinecraftBenYT 2 місяці тому +2

    10:38 28 does not want to be with anyone else

  • @PowerGumby
    @PowerGumby Місяць тому +1

    there would technically be an infinite number of numbers that rise up to infinity if 276 is proven to rise up to infinity

  • @TinyかわいいGamer
    @TinyかわいいGamer 2 місяці тому +4

    Seeing them say sigma hurts me.

    • @NotLobotomy
      @NotLobotomy 2 місяці тому +2

      Oh why? Cuz its brainrot? If you think it's brainrot, then YOU are brainrot. Kids these days

    • @TinyかわいいGamer
      @TinyかわいいGamer 2 місяці тому

      @@NotLobotomy I know that in this case it's not related to brainrot, but it still hurts me

  • @noonethatyouknow5555
    @noonethatyouknow5555 2 місяці тому +2

    1:52 sorry the... what project???

    • @NotLobotomy
      @NotLobotomy 2 місяці тому

      Gimps, not goons, brainrot being.

  • @MatthewConnellan-xc3oj
    @MatthewConnellan-xc3oj 3 місяці тому +1

    Cool!

  • @Lifeless_Asian
    @Lifeless_Asian 3 місяці тому +3

    Gen Alpha ruined maths for me. I will never hear "Sigma" the same way again

    • @jinxxdd
      @jinxxdd 2 місяці тому

      i was expecting a top comment to be "sigma function more like me function" or something

  • @monishrules6580
    @monishrules6580 3 місяці тому +1

    1:23 wow wow wowowowo2owowobwow i didnt know that wow just wo wtf wow i mean wow i mean yeah but i mean yeah but also how,are there more aside from these?

  • @KananR-ns9jv
    @KananR-ns9jv 3 місяці тому +1

    All powers of 2 are also near-perfect numbers (just one off), but that would be too easy.

    • @Kuvina
      @Kuvina  3 місяці тому +1

      technically they're defined as abundant numbers where you subtract one of their factors from the aliquot sum to get n. With powers of 2, you have to add a factor (1) a second time to get n

    • @mrhangertv1829
      @mrhangertv1829 2 місяці тому

      Actually, those numbers are deficient so they can't be Near Perfect

  • @TheSheep1
    @TheSheep1 Місяць тому +1

    Can someone explain to me the aliquot thing

  • @2003LN6
    @2003LN6 3 місяці тому +1

    7:37 why does the number have to be even? The 2 can have any exponent, but anything greater than 0 would make it even?

  • @funwithtommyandmore
    @funwithtommyandmore 3 місяці тому +1

    Omg perfect numbers

  • @hamzamotara4304
    @hamzamotara4304 3 місяці тому +2

    Huh. I still don't know why my brother keeps on saying he's a sigma.

    • @Manky-m9j
      @Manky-m9j 2 місяці тому

      Is this a real question? Because if so, there is a discredited theory that the leader of a pack of wolves is the "alpha" of the pack, so someone decided to apply that to humans and call them an "alpha male" and from that spawned beta males, which are considered "lesser" to alphas, and sigmas, which are like alphas but more independent. This is all nonsense pushed by charlatans to sell online courses

  • @anamonteiro1173
    @anamonteiro1173 3 місяці тому +2

    sigma is multiplicative, but also sussy...

  • @SupportPalestine985
    @SupportPalestine985 2 місяці тому +2

    sigma 💀

  • @EHMM
    @EHMM 3 місяці тому +1

    nice

  • @mxsteri0
    @mxsteri0 3 місяці тому +1

    HOW AM I HERE IN AN HOUR

  • @TheSlackingGecko
    @TheSlackingGecko 3 місяці тому +1

    this is for real math class number g64

  • @cherylchui4510
    @cherylchui4510 25 днів тому

    How am I supposed to know what you are about to say so I know if I should skip to the Descartes number?

  • @SamiSaba2
    @SamiSaba2 3 місяці тому +2

    1:04 what about 69

  • @lyrimetacurl0
    @lyrimetacurl0 3 місяці тому +1

    Maybe 138 goes to the odd perfect number 😄

  • @minirop
    @minirop 3 місяці тому +2

    almost, near, quasi. is it a maths video or a synonym dictionary?

  • @FezEmerald
    @FezEmerald 3 місяці тому +2

    nice flag 🟨⬜️🟪⬛️

  • @hysda80
    @hysda80 9 годин тому

    What about 1? is 1 a perfect number? cuz 1s factors (excluding decimals) is 1 (more trivial) and 1 (less trivial) 1+1=2 2=1x2 so why isn’t talked about

  • @MadContendery
    @MadContendery 3 місяці тому +2

    i suppose you could say they dont have enough sigma rizz to be perfectg

  • @kirilvelinov7774
    @kirilvelinov7774 3 місяці тому +1

    68

  • @timelymatters
    @timelymatters 3 місяці тому +1

    Love how one is just in it different category just like it in a different category for prime or composite numbers it’s just 0,1

  • @kailetrangere8967
    @kailetrangere8967 3 місяці тому +1

    hi kuvina! lovely video. is there a place to get "news" about new discoveries of number facts like this?

  • @RubyPiec
    @RubyPiec 3 місяці тому +1

    calibri

  • @Blackfromstickworld
    @Blackfromstickworld Місяць тому

    I found a quasi-perfect number

  • @PretzelBS
    @PretzelBS 3 місяці тому +1

    A perfect and almost perfect video 🤔

  • @Psi_Fan123
    @Psi_Fan123 3 місяці тому +2

    Hi

  • @k0pstl939
    @k0pstl939 3 місяці тому +5

    If there are even perfect numbers for every mersenne prime and we know primes are infinite(and I believe that there are also infinitely many mersenne primes), wouldnt we know that there are infinite perfect numbers(at least even ones)?

    • @samuelmalcolm5121
      @samuelmalcolm5121 3 місяці тому +3

      I don't believe we know that Mersenne primes are infinite

    • @Psi_Fan123
      @Psi_Fan123 3 місяці тому +3

      It is unproven that there are infinite mersenne primes

    • @k0pstl939
      @k0pstl939 3 місяці тому +3

      Interesting. Why then would we be using mersenne primes as our main search for larger primes?

    • @Psi_Fan123
      @Psi_Fan123 3 місяці тому +3

      @@k0pstl939 because it is easy to prove if a mersenne number is prime, also it is suspected but unproven that there are infinite mersenne primes

    • @catgirlQueer
      @catgirlQueer 3 місяці тому

      ​@@k0pstl939it's also unproven that there *aren't*, we just don't know currently

  • @bigepicmanthatlovesfunands4477
    @bigepicmanthatlovesfunands4477 2 місяці тому +2

    Okay but what is a perfect number supposed to be
    Oops I watched like 10 seconds in and now I think I know

  • @LaTinkaLoterias179
    @LaTinkaLoterias179 2 місяці тому

    Id like for 9000 and 5397 to be coprime but unfortunately they share a common factor of 3

  • @soalr_syztem
    @soalr_syztem 3 місяці тому +1

    ALMOST r/foundsatan