Introduction: MARKOV PROCESS And MARKOV CHAINS // Short Lecture // Linear Algebra

Поділитися
Вставка
  • Опубліковано 4 лют 2025

КОМЕНТАРІ • 23

  • @walterreuther1779
    @walterreuther1779 7 місяців тому +1

    I love this being part of an introductory Linear Algebra series.
    I‘be seen many non-mathematicians coming away from LA thinking it is pretty useless in the real world. But here we have some of the more nuanced basics applied beautifully in a real world example.
    Love it. Diagonalisation, Limits, Eigenvalues and Eigenvectors all motivated in one easy to understand example.

  • @walterreuther1779
    @walterreuther1779 7 місяців тому +1

    I know Markov Processes as Stochastic Processes with Markov Property and Countable (not necessarily finite) State Space (which is not so nice for Diagonalisation… and must sometimes be solved with difference equations…), but I guess this is a matter of opinion / definition etc. ^^ and here the finite one is definitely what we want…

  • @StephenKatana-s3w
    @StephenKatana-s3w 2 місяці тому +1

    How to calculate the second year

    • @Prof.afterMATH
      @Prof.afterMATH  24 дні тому

      You multiply the x_0 vector with the transition matrix twice.

  • @kabuda1949
    @kabuda1949 Рік тому +4

    Based. Haha half a semester course in a 16min video. Clearly explained. Thanks

  • @spiderkent
    @spiderkent 2 роки тому +1

    Topic clearly explained! I particularly like your examples and step-by-step details.

  • @chikitau3795
    @chikitau3795 11 місяців тому +1

    Excellent explanation and examples

  • @donaldoji6399
    @donaldoji6399 2 роки тому +1

    Awesome explanation of Markov process/chains. Thank you so much! Just subscribed!

  • @hp127
    @hp127 3 роки тому +3

    Nice work. Thanks.

  • @tasosf.9089
    @tasosf.9089 Рік тому +1

    What if x isn't diagonalisble

  • @nishantsharma1754
    @nishantsharma1754 3 роки тому +3

    Thanks ,It helped a lot..

  • @ilyasbashir5139
    @ilyasbashir5139 2 роки тому +1

    Only now I understand the mark of chain

  • @emadadel3701
    @emadadel3701 3 роки тому +1

    sum of each row in trasition matrix should equal 1 ??

    • @Prof.afterMATH
      @Prof.afterMATH  3 роки тому

      For the matrix to represent a stochastic process, the columns must add to one.

  • @vishwanathan.r9171
    @vishwanathan.r9171 3 роки тому +1

    can we do like directly Ax0 instead of find e.values and vector

    • @Prof.afterMATH
      @Prof.afterMATH  3 роки тому

      Hi! I'm not sure what you mean here. Can you explain your question a little more?

    • @vishwanathan.r9171
      @vishwanathan.r9171 3 роки тому

      In first example (puppy sum) u directly done using AXo,AX1,AX2 but in second sum u done AXo using eigen values diagonalzation method
      Here my question is in second question can we do directly AXo with out finding eigen value and all

  • @shashikantamogi9151
    @shashikantamogi9151 2 роки тому

    दुसरं काय विषय भेटलं नाही