Poland Math Olympiad | A Very Nice Geometry Problem

Поділитися
Вставка
  • Опубліковано 4 січ 2025

КОМЕНТАРІ • 33

  • @imetroangola17
    @imetroangola17 4 місяці тому +2

    Parabéns pelos vídeos! 🎉

  • @toninhorosa4849
    @toninhorosa4849 4 місяці тому +2

    I solved like this:
    I have :
    A big triangle ABC where:
    AB = AC = 5
    BC = 6
    From point "A" I draw de line AP perpendicular to line BC. This will be the height of triangle ABC.
    I have now :
    BP = 3 and PC = 3
    To find AP I apply Pythagoras on triangle APC.
    AC^2 = PC^2 + AP^2
    5^2 = 3^2 + AP^2
    AP^2 = 5^2 - 3^2
    AP^2 = 25 - 9 = 16
    AP = 4 ( h = height)
    I have a square and his side a will call of "a"
    DF=DG=EF=GF = a
    The big triagle ABC and the small triangle ADE are similar ( three angles equals)
    In ∆ADE the height will be AH = (4 - a)
    Then:
    h/Base => 4/6 = (4-a)/a
    4a = 6(4 - a)
    4a = 24 - 6a
    4a + 6a = 24
    10a = 24
    a = 24/10
    a = 2,4
    Square area = a^2 = (2,4)^2
    Square area = 5,76 units^2

  • @florianbuerzle2703
    @florianbuerzle2703 4 місяці тому +1

    The altitude on BC is 4 by the Pythagorean theorem. Be x the side length of the square, we have by similarity that (x/2) / (4 - x) = 3/4. So x = 12/5 and x² = 144/25. Easy one 😊

  • @ludmilaivanova1603
    @ludmilaivanova1603 4 місяці тому

    we can solve this problem without additional constructions by using the ratio of a base and side leg of similar triangles: ADE and ABC (6/5) and name a side of the square "a", for example. Based on that, we express FC using Pythagorean theorem and solve the quadratic equation. we got a=2.4 and Area is 5.76.

  • @saronohandoyo4958
    @saronohandoyo4958 4 місяці тому +1

    imo it will be easier to use 3-4-5 phytagorean number so I use 12x as side of the square
    GD is 12x, BG will be 9x and BD will be 15x
    DP is 6x, PA will be 8x and DA will be 10x
    BD + DA = 5
    15x + 10x = 5
    25x = 5 => x= 1/5
    side is 12x = 12/5
    area is side^2= (12/5)^2 = 144/25 unit square

  • @RAG981
    @RAG981 4 місяці тому +1

    I called side of square x. AP = 4-x. DP = .5x and APD is similar to AQB, so (4-x)/.5x = 4/3 giving 12 - 3x = 2x, so x = 12/5.

  • @jimlocke9320
    @jimlocke9320 4 місяці тому

    At 7:25, Math Booster has found that AQ = 4 and BQ = 3. Consider ΔABQ. The ratio of short side BQ to long side AQ is 3/4. Now consider similar ΔDBG. The short side BG is therefore 3/4 of the length of long side DG, which has length 2a, so BG has length 3a/2. However, Math Booster has found BG = 3 - a. So, 3a/2 = 3 - a, 5a/2 = 3, 5a = 6 and a = 6/5. The side of the square has length 2a, or (2)(6/5) = 12/5. The area of the square is (12/5)² = 144/25, as Math Booster also found. The area can also be written in decimal form as 5.76.

  • @sebrosacademy
    @sebrosacademy 4 місяці тому +1

    Keep up working hard. Thank you

  • @nunoalexandre6408
    @nunoalexandre6408 4 місяці тому +2

    Love 🎉❤it

  • @danilopapa3853
    @danilopapa3853 3 місяці тому

    The height of the triangle is obviously 4
    Now, let 2a be the edge of the square.
    For similarity of triangles, we have
    2a/4 = (3-a)/3
    a =2*(3-a)/3
    3a = 6 - 2a
    5a = 6
    2a =12/5
    The area of the square is:
    (2a)*(2a) = 12*12/5*5 = 144/25 = 5.76

  • @richardsullivan1655
    @richardsullivan1655 4 місяці тому

    let the side of the square =2x, makes it simpler. similar triangles 4 mins max for solution

  • @謝利福-k6h
    @謝利福-k6h 3 місяці тому

    Only know DE=GF=2a 5:42 ,then we get DEFG is a square directly? I think DEFG also can be a rectangle,not just a square。 Its a bug however 。So DG can be any value ,this problem has infinite solutions。If DG= 2a,Area=144/25=5.76,if DG=a,Area=288/49=5.88,if DG=3a,Area=864/169=5.11 11:34

  • @michaeldoerr5810
    @michaeldoerr5810 4 місяці тому

    The answer is (12/5)^2. I must admit that I was really surprised that I overlooked this lesson: that similar triangles by the right angle leg justify both sides of the square to be 2a. I hope that it is a sufficient takeaway. Because that justifies both 3-a as well as how the triangles subdivides the square. Personally I would just use the Pythagorean Theorem, indent the right angles and thetas, show where the a gets cancelled out, and set the square sides to 2a. I might be repeating the same procedure. I hope that this means that I got this. Just like the last two problems which I have tested myself and timed myself on!!!

  • @himo3485
    @himo3485 4 місяці тому

    6/2=3 √[5²-3²]=4
    BG=FC=3x GF=DE=DG=EF=4x 3x+4x+3x=6 10x=6 x=3/5
    area of square DEFG = 4x*4x = 12/5 * 12/5 = 144/25

  • @CharlesChen-el4ot
    @CharlesChen-el4ot 4 місяці тому

    4 : 3 = k : 1/2 x
    k = 2x/3
    x = 4 - 2x/3
    x = 12/5
    x^2'= 144/25= 5.76

  • @devondevon4366
    @devondevon4366 4 місяці тому

    Answer 5.76
    Draw a perpendicular line inside triangle ABC from BC to A to form two congruent triangles, APB and APC, with sides 3, 4, and 5
    Triangles BDG and CEF are similar to triangle ABC
    Label the square 'n,' hence DE = n, DG=n, and EF=n
    If DG =n (and BDG is similar to ABC), then BG= 3/4n,
    If EF=n ( and CEF is similar to ABC), then FC = 3/4n
    Notice that line BC (on ABC) = BG + DE + FC = 6
    Hence, 3/4n + n + 3/4 n = 6 (recall n =DE see above)
    3/4n + 4/4n + 3/4 n = 6
    10/4 n = 6/1
    n = 6/1 * 4/10
    n= 24/10
    n = 2.4 So the length of the square = 2.4
    Hence its area = 2.4^2 or 5.76 Answer

  • @murdock5537
    @murdock5537 4 місяці тому

    ∎DEFG → DE = EF = FG = DG = a; BC = BO + CO ↔ BO = CO = 3; AB = BC = 5
    sin⁡(BOA) = 1 → AO = 4 ; ABO = δ → tan⁡(δ) = 2a/(6 - a) = 2(4 - a)/a → a^2 = 144/25 = area ∎DEFG

  • @AndreasPfizenmaier-y7w
    @AndreasPfizenmaier-y7w 4 місяці тому

    3:4=a:(4-2a)

  • @santiagoarosam430
    @santiagoarosam430 4 місяці тому

    DE=2a ; M es punto medio de GF y N lo es de DE→ (4-2a)/a=2a/(3-a)→ a=6/5→ Área DEFG =(2a)²=2*6/5)²=144/25 ud².
    Gracias y un saludo cordial.

    • @santiagoarosam430
      @santiagoarosam430 4 місяці тому

      Aclaración: Si BA=5 y BM=6/2=3 ---> MA=4. --->. AN/ND=DG/GB---> (4-2a)/a=(2a)/(3-a)

  • @anniesworldeverythingsurro8214
    @anniesworldeverythingsurro8214 4 місяці тому

    Area =5.76 square units

  • @gtoaha
    @gtoaha 4 місяці тому

    1/6+1/4=1/X
    X=12/5
    Area=144/25

  • @niranjanchakraborty1139
    @niranjanchakraborty1139 4 місяці тому

    Area =3^2

  • @Ben-pw3qe
    @Ben-pw3qe 3 місяці тому

    Nice ... But why too much explanation 😏... Look at Charles Solution

  • @giuseppemalaguti435
    @giuseppemalaguti435 4 місяці тому

    ACB=α . Briggs,.cos(α/2)=√(8*3/5*6)=√(4/5)..cosα=2*4/5-1=3/5...5sinα:3=l:(3-l/2)...l=12/5

  • @Tmwyl
    @Tmwyl 4 місяці тому

    I got this one!

  • @devondevon4366
    @devondevon4366 4 місяці тому

    5.76

  • @josephsalinas6725
    @josephsalinas6725 4 місяці тому

    Essa eu acertei !

  • @LebrunDominique
    @LebrunDominique 4 місяці тому

    12

  • @MertTuncer-vc9tl
    @MertTuncer-vc9tl 4 місяці тому

    6

  • @nonnoricky
    @nonnoricky Місяць тому

    Your pronunciation is very annoying and you say too many obvious things that slow down the explanation... not to mention the repetitions! I suggest you to improve those aspects to make the most from your videos! 😊

  • @ertanbakoglu1293
    @ertanbakoglu1293 4 місяці тому

    it is too long. There is simple way.
    4-x:4=x/2:3
    12-3x=2x
    12=5x
    x=12/5
    area=144/25