Confusion Matrix TensorFlow | Confusion Matrix Explained With Example | 2023 | Simplilearn

Поділитися
Вставка
  • Опубліковано 29 гру 2024

КОМЕНТАРІ • 17

  • @SimplilearnOfficial
    @SimplilearnOfficial  4 роки тому +4

    🔥Caltech Post Graduate Program In AI And Machine Learning - www.simplilearn.com/artificial-intelligence-masters-program-training-course?WyZhcktn4&Comments&UA-cam
    🔥IITK - Professional Certificate Course in Generative AI and Machine Learning (India Only) - www.simplilearn.com/iitk-professional-certificate-course-ai-machine-learning?WyZhcktn4&Comments&UA-cam
    🔥Purdue - Post Graduate Program in AI and Machine Learning - www.simplilearn.com/pgp-ai-machine-learning-certification-training-course?WyZhcktn4&Comments&UA-cam
    🔥IITG - Professional Certificate Program in Generative AI and Machine Learning (India Only) - www.simplilearn.com/iitg-generative-ai-machine-learning-program?WyZhcktn4&Comments&UA-cam
    🔥Caltech - AI & Machine Learning Bootcamp (US Only) - www.simplilearn.com/ai-machine-learning-bootcamp?WyZhcktn4&Comments&UA-cam

  • @pgup269
    @pgup269 4 роки тому +5

    21:20
    Here in confusion matrix, 25 should be true negative, instead of true positive.
    The output layout of sklearn.metrics.confusion_matrix is different from what we saw in regular confusion matrix.

  • @roopagaur8834
    @roopagaur8834 4 роки тому +2

    Well explained 👍 thanks

  • @shahmainurrahman8510
    @shahmainurrahman8510 4 роки тому +3

    The number of predictions(n) depends on what??
    If we have 5000 test data, what will be the number of predictions(n) for confusion matrix?

    • @SimplilearnOfficial
      @SimplilearnOfficial  4 роки тому +2

      "Hi Shah,
      n represents the total number of predictions made by the model. It is equal to the sum of TN+TP+FN+FP."

    • @strongsyedaa7378
      @strongsyedaa7378 3 роки тому +1

      @@SimplilearnOfficial
      Can YOU please make a video on
      Confusion Matrix For Multiclass classification?

  • @hanohbeizer5368
    @hanohbeizer5368 4 роки тому

    On 17:34 you said that the test data should not be scaled.
    On 18:42 you scale x_test.
    I'm a bit confused.

    • @victornazlukhanyan533
      @victornazlukhanyan533 3 роки тому

      A bit late but he explicitly said (although he stumbled with his words so I can understand your confusion) that whatever you fit (e.g. scaler) you must fit on the training (as that is the only data your model sees). You have to scale x_test however you use the scaler fit on training to do it. Now any future data will be scaled with a scaler that has been pre-trained.

  • @anantgosai8884
    @anantgosai8884 2 роки тому

    Thank you!

  • @paragparikh2201
    @paragparikh2201 4 роки тому +1

    41 people watched this in 7 minutes... WOOOW.
    Oh yeah, first commenter!!!

  • @mihiretgashaw2662
    @mihiretgashaw2662 2 роки тому

    where is the dataset?

    • @SimplilearnOfficial
      @SimplilearnOfficial  2 роки тому +2

      Hello, thanks for viewing our tutorial. You can find your requested dataset in the video description. Hope that helps.

  • @paragparikh2201
    @paragparikh2201 4 роки тому +1

    First