Sigma Field / sigma algebra

Поділитися
Вставка
  • Опубліковано 4 лют 2025

КОМЕНТАРІ • 86

  • @abramcz
    @abramcz 5 місяців тому +1

    Well this is certainly clearer than anything else on UA-cam. Nice job coloring all those Venn diagrams in one go with no mistakes!

  • @Gengar99
    @Gengar99 3 роки тому +3

    I watched 2-3 sigma-algebra before this and this video had the better explanation for me, thank you.

  • @kushalneo
    @kushalneo 4 роки тому +8

    Nice informative video.
    As per my understanding, at 6:40, Omega={1,2,3} and {Omega}={{1,2,3}} are two different thing. {Omega} is a member of T not the Omega. Kindly correct me if I am wrong.

  • @marcoosyo6222
    @marcoosyo6222 5 років тому

    U are the best!!!!!!!!!!!! Even in my native language I cound´t find someone with this great and clear explanation.

  • @vrushalibhise7375
    @vrushalibhise7375 4 роки тому +1

    I just realized that my college professor used the exact same notes for explaining Sigma algebra! thankyou

  • @zildijannorbs5889
    @zildijannorbs5889 2 роки тому +1

    Besides the notation thing, great material! Really makes me wanna rip through my probability problems lol.

  • @minato232
    @minato232 4 роки тому

    Thanks good i finally find an example about what isn't a sigma-álgebra, thanks man.

  • @scadqwqw
    @scadqwqw 12 років тому +3

    At about 6:15, you define the trivial set as T = { {Ø}, {Ω} }, but I think you mean T = {Ø, Ω}, without the extraneous braces. Ø denotes the empty set, and {Ø} is a set with one element (which is the empty set), so they are different. For T to be a sigma-algebra, Ø and Ω themselves must be elements of T.

  • @eshaankushwaha6474
    @eshaankushwaha6474 5 місяців тому

    The examples made the explanation lucid!

  • @THemnafiod
    @THemnafiod 14 днів тому +1

    Those who know 💀💀💀💀Boi this is so tuff!!!

  • @귤-e5g
    @귤-e5g 4 роки тому +1

    Thank you for you video! You've made it very easy to understand.

  • @tomtian895
    @tomtian895 5 років тому +2

    Hey ya, I find your video very clear and comprehensive.
    Can you provide a sequence of watching?
    Also can you make more videos like these.
    Thank you!

  • @wf060
    @wf060 13 років тому +1

    thank you sir, you are far better than my teacher, Danke

  • @haggaisimon7748
    @haggaisimon7748 3 роки тому

    A nice and a short video. 0:49 the sign of inclusion is inaccurate. Sigma belongs to F as an element, but not as a subset.

  • @yousify
    @yousify 9 років тому +1

    thank you so much, I noticed that you put "phi" inside curly brackets "{ }"; in set theory it states that curly brackets "{ }" is equivalent to "phi";

  • @kevin_m_smith
    @kevin_m_smith 7 років тому

    Great description and examples! This cleared things up for me

  • @juanlynching3807
    @juanlynching3807 11 місяців тому

    its similar to properties of discrete probability distribution.p(X)=1 and 0

  • @tavrion
    @tavrion 12 років тому +3

    Thank you for taking the time to make this.

  • @clemz26
    @clemz26 7 років тому +1

    Thanks for the video. It is clear, and answered all my questions :D

  • @luylasnubes2974
    @luylasnubes2974 2 роки тому

    I have a question about the examples: Why is the sample set inside brackets {Ω}? shouldn't have to be without brackets like Ω ? because we already know that represents {1,2,3} so if that is inside brackets we get: {{1,2,3}} which is not at the level of the other subsets of the collection of each example, precluding to be measurable. I talking that instead of Z = {{{}},{Ω}} we should write Z = {{},Ω} and instead of Z = {{{}},{Ω},{1,2}, {3}, {2,3}} we should write : Z = {{},Ω,{1,2}, {3}, {2,3}}

  • @rodolfohernandez458
    @rodolfohernandez458 3 роки тому

    Thank you. The video is fantastic.

  • @dalegillman5287
    @dalegillman5287 3 роки тому

    Thanks, great video, friend.

  • @mairamunir8344
    @mairamunir8344 10 років тому +3

    Helped me with my homework. Thanks

  • @kirandeshmukh8725
    @kirandeshmukh8725 3 роки тому

    This leacture is really awesome

  • @Nathsnirlgrdgg
    @Nathsnirlgrdgg 8 років тому +35

    your first condition should be that omega is an element of sigma, not a subset.
    {omega} != omega, {omega} = {{1,2,3}}. There shouldn't be brackets around omega inside the examples.
    {null_set} != null_set. There shouldn't be brackets around the null_set in the examples.

  • @pprokics
    @pprokics 11 років тому

    Simple and very clear explanation od sigma algebra.

  • @sunfender2276
    @sunfender2276 11 років тому +2

    thank you so much! I have paid for books which do not explain half as clear as you did, with the examples and all. I also thank scadqwqw for additional clarification.

  • @crazychic1990
    @crazychic1990 10 років тому +1

    you deserve heaven sir

  • @SamirPatnaik
    @SamirPatnaik 3 роки тому

    Very helpful. Thank you so much

  • @dacianbonta2840
    @dacianbonta2840 11 місяців тому

    Are uncountable sigma algebras of computational interest, given they run smack dab into AoC+CH buzz saw?

  • @jingwan49
    @jingwan49 10 років тому

    Awesome. Easy to understand.

  • @luylasnubes2974
    @luylasnubes2974 2 роки тому

    I have another question, in the first property of the sigma-field it says that Ω ⊂ F. But as I understand the containment symbol (⊂) is used for subsets, but in this context Ω is not refered to a subset but an element of F, so shouldn't be written as Ω ∈ F the first property? Also in the second property It has A ∈ F which I consider it is correct.

  • @gidssforever
    @gidssforever 11 років тому

    Great, but at 12:53 you should add that is the cardinal of any sigma-algebra that lies between the cardinals of the trivial and power set instead of use "

  • @andrytino
    @andrytino 5 років тому +2

    There is a mistake in the notation I think. When you want to indicate that, in your first example, T = {emptyset, omegaset}, you should write emptyset without parentheses, otherwise {emptyset} and {omega} mean a set containing another set...
    Also, the first condition at the beginning, you should not use operator "contains" but operator "in".

  • @RafaelGonzalezDeGouveia
    @RafaelGonzalezDeGouveia 11 років тому

    Not totally sure, but think that empty set and Omega may not be in bracket, because they are allredy a set, so is like put a set into a set

  • @samueldarenskiy6893
    @samueldarenskiy6893 4 місяці тому

    the example in 7:30 is actually a set with an empty set inside of it. So, the condition for a sigma-algebra is NOT satisfied I would argue

  • @jessievanbreda5119
    @jessievanbreda5119 6 років тому

    This is great please make more videos on probability measure!

  • @ehabfaisal
    @ehabfaisal 3 місяці тому

    nice job thank you

  • @ranadanish4245
    @ranadanish4245 7 років тому

    you do very nice, make more video on measure theory

  • @RahulaSamaranayake
    @RahulaSamaranayake 3 роки тому

    well explained

  • @Ghruul
    @Ghruul 10 років тому +6

    when you say "F is closed under countable unions", you shouldnt just mention the finite Union, but also the countable infite union of a series Ai, where it then would say "If A1,A2,A3,...Ai,... is an element of F, then so is the union UAi from i=1 to infinity"

    • @VahidOnTheMove
      @VahidOnTheMove 6 років тому

      As far as I understood, because of condition 1, it is not necessary to say infinite set. All you need is to change A1,A2, ... to A1 union (A1)^c (complement of A1). By this you can change infinite union to finite union. Indeed, you will have a finite union of sets.

    • @salim444
      @salim444 4 роки тому

      @@VahidOnTheMove It might be late but I would like to give my thoughts. suppose omega is [0,2]. and the building sets for F are of the form [0,1-1/n] and let's include their complements and all the finite unions. the set [0,1) is not in F but is in the union on all the sets we started with. F does contain omega simply because it contains the sets and their compliments,it does obey the closure under compliments and finite union by definition. F doesn't have [0,1) because if you think about the group from topology thin this is an open set in the induced topology from R onto omega but doesn't include any set of the compliments of the sets [0,1/n]. so it isn't an open set in the topology from F

  • @everyonesmeow
    @everyonesmeow 11 років тому +1

    thanks for clear explanation.

  • @thybowllingman2752
    @thybowllingman2752 6 років тому

    thanks, that was actually pretty helpful. Keep it up!

  • @zenpower1684
    @zenpower1684 9 років тому +6

    There seems to be something wrong with property 1. Omega is an element of F rather than a subset of F.

    • @Kuxe
      @Kuxe 7 років тому +1

      This is true. He says that Omega is a member of F, which is correct, but he have used the wrong symbol.

  • @02vLxcZF
    @02vLxcZF 10 років тому

    Thanks, very clear. Why not build on this video and explain Measure Theory?

  • @LaureanoLuna
    @LaureanoLuna 12 років тому +2

    Mind the notation of the first condition: you use the symbol of subset-of instead of the symbol of member-of.
    Also the definition you give later on corresponds to 'finite union', not to 'countable union'.

  • @freddy4960
    @freddy4960 9 років тому

    Thank you very much! Very good explanation!

  • @lolxd7740
    @lolxd7740 2 дні тому

    such a sigma video

  • @siminliu5281
    @siminliu5281 3 роки тому

    really really helpful, thanks!

  • @motherfatherish
    @motherfatherish 13 років тому

    thank u so much it made me understand this topic....

  • @ShailenSobhee
    @ShailenSobhee 13 років тому

    How about the the Borel sigma field?

  • @Matematica_Aplicada
    @Matematica_Aplicada 8 років тому

    Very clear! Thanks!

  • @Zanoula06
    @Zanoula06 11 років тому +1

    Thanks, very very helpful!!!!

  • @bachirdh
    @bachirdh 12 років тому

    Very clear video, thanks a lot ;-)

  • @rhlvora
    @rhlvora 12 років тому

    wonderful

  • @alvtal1
    @alvtal1 10 років тому

    Muy bueno!! Very good

  • @HenriqueBSena
    @HenriqueBSena 8 років тому

    this exemples works, because you uses a finity set.

  • @firdovsihasanzada
    @firdovsihasanzada 4 роки тому

    Thanks

  • @GiuseppeVittucci
    @GiuseppeVittucci 13 років тому

    Thanks a lot. Very clear. ;-)

  • @lunchguo
    @lunchguo 13 років тому

    really helpful~

  • @PoppyPin
    @PoppyPin 9 років тому

    Thankyou thankyou thankyou!!

  • @HenriqueBSena
    @HenriqueBSena 8 років тому +5

    wrong, sigma algrebra uses infinity union. a finity union define only a algebra.

    • @pedroduarte6672
      @pedroduarte6672 8 років тому

      I guess you are right. if F is theta-field and if A belongs to F than the infinity union of An belongs to F.

  • @deathmetal124
    @deathmetal124 9 років тому

    Thank you!

  • @arxdeath773
    @arxdeath773 8 років тому

    Thanks!

  • @kevinchen2167
    @kevinchen2167 9 років тому

    I'm lost in this example; T = { {Ø}, {Ω} }, why ØUΩ=Ω and ØnΩ=Ø?

    • @nobodycares9797
      @nobodycares9797 9 років тому +2

      +Kevin Chen
      You can think of the operation union as "all the elements that belong to both A and B". Likewise, you can define the intersection as "all the elements unique to both A and B". So when you have Omega U 0, you are essentially asking "if I combine all the elements of the set and the empty set, what will I get". Obviously, you get the elements of the set because the null set contains nothing. Similarly, when asking "Omega intesect 0", you are looking for all the elements you can find in both Omega and the empty set. Well, Omega has elements, but the empty set has nothing. Therefore, they have no common element, nothing between them. So the result is the empty set.

  • @Vewyt
    @Vewyt 13 років тому

    Thanks, I've got it

  • @derekchan3633
    @derekchan3633 10 років тому

    is {empty set} = empty set ?

  • @delnomad
    @delnomad 11 років тому

    Dzięki !!!

  • @nathaliem3322
    @nathaliem3322 7 років тому

    THANK YOU!!

  • @RafaelGonzalezDeGouveia
    @RafaelGonzalezDeGouveia 11 років тому

    think the same

  • @avarussurava9488
    @avarussurava9488 8 років тому

    THANK YOUU

  • @stepbil
    @stepbil  13 років тому

    Danke;-)

  •  11 років тому

    :D

  • @wenjunma5083
    @wenjunma5083 11 років тому

    Superficial stuff, nothing useful.

  • @banghaters1965
    @banghaters1965 Рік тому

    Thanks a lot ra Dhootha