Algebra 45 - Three Variable Systems with Infinite or Null Solution Sets

Поділитися
Вставка
  • Опубліковано 22 гру 2024

КОМЕНТАРІ • 11

  • @baharosman1416
    @baharosman1416 5 років тому +1

    I started watching and loving your videos

  • @emailhy
    @emailhy 8 місяців тому +3

    Please like

  • @alexsmit9852
    @alexsmit9852 8 років тому +3

    This guy is probably laughing his ass off doing the animation stuff. At least I am, while watching it.

  • @justinli19901027
    @justinli19901027 4 роки тому +2

    Extremely helpful

  • @Jason1975ism
    @Jason1975ism 7 років тому +1

    something is missing.. z is still in existence. why doesn't z become a trifecta number set? we had to kill z but its not gone?

  • @zeyadramadan8759
    @zeyadramadan8759 8 років тому +1

    How can you handle two equations in which each one has 3 variables. We normally call this underdetermined system. But i just want to know why we need 3 equations when we have 3 variables.

    • @MyWhyU
      @MyWhyU  8 років тому +3

      +Zeyad Ramadan You can think of each variable as representing one degree of freedom, and each equation as representing one constraint. Dependent equations don't count since they can be derived from other equations in the system and therefore don't add any new information to the system. When the number of independent constraints equals the number of degrees of freedom, then the solution set is constrained to zero dimensions (a point). When the number of constraints is one less than the number of degrees of freedom, then the solution set is constrained to a single dimension (in the case of linear equations - a line). When the number of constraints is two less than the number of degrees of freedom, then the solution set is constrained to a two dimensional surface (in the case of linear equations - a plane), etc.

  • @matthewtrin
    @matthewtrin 9 років тому +1

    Awesome!

  • @milestailsprower4555
    @milestailsprower4555 2 роки тому

    -0, since said that it is neither negative nor positive

  • @marcalderon2710
    @marcalderon2710 11 місяців тому

    thank you!!!!!!

  • @cristhianmedina4035
    @cristhianmedina4035 11 місяців тому

    Woooooow