What is Mean Average Precision (mAP)?

Поділитися
Вставка
  • Опубліковано 17 гру 2024

КОМЕНТАРІ •

  • @shukkkursabzaliev1730
    @shukkkursabzaliev1730 Рік тому +2

    Thank you guys for all the hard work you do! And making available for free to all of us!

  • @Anton_Sh.
    @Anton_Sh. 9 місяців тому +1

    7:10
    The IoU is not the amount of overlap between the two boxes, it's "Intersection over Union", so the area of overlap / area of union, its the proportion, whereas the intersection alone is the overlap value.

  • @EvangelosKarajan
    @EvangelosKarajan 3 місяці тому +1

    Great content!

  • @yuganshgoyal6348
    @yuganshgoyal6348 4 роки тому +26

    1. F1 score is harmonic mean of precision and recall, and just not simply the result of their multiplication.
    2. 9:20 you totally failed to clarify things. So what mAP is:
    a. is it average of AP at different IoUs of a single class
    b. or average of AP across different classes
    but then what happened to AP at different IoUs
    Overall it is informative. But would be better if you can just clarify things a bit more..

    • @ben6
      @ben6 4 роки тому +1

      I found the same thing on their blog post. Doesn't actually answer the title of the video.

    • @alejandromarceloproiettian5079
      @alejandromarceloproiettian5079 4 роки тому +12

      AP is calculated using a single IoU, as the mean of precisions achieved at each recall level (different detection thresholds).
      As AP is calculated for each class, mAP (mean average precision) is calculated as the mean value of average precisions.
      AP and mAP depend on the selected IoU, and are thus called by its IoU (mAP50, mAP75, etc.)

    • @ankitmagan
      @ankitmagan 3 роки тому

      @@alejandromarceloproiettian5079 You mention different detection thresholds. Is this the confidence value that the model outputs?

    • @VinayVerma982
      @VinayVerma982 3 роки тому +1

      @@ankitmagan Confidence Value (confidence score) is the probability of the object present in a particular anchor box. Its mostly coming from the classifier.
      We are talking about IoU. Its overlap/union ratio between the predicted and ground truth(actual) bounding box that we have in our labelled dataset. We can calculate mAP when we have labelled test dataset and we predict boxes and compare how precise bounding boxes are generated with respect to ground truth boxes.

  • @brunozana
    @brunozana 4 місяці тому

    Best video in this topic

  • @Maciek17PL
    @Maciek17PL 2 роки тому +1

    What is that plot with confidence as y-axis at 4.18 its super confusing

  • @sonnyson0723
    @sonnyson0723 4 місяці тому

    Thanks ALL FOR instruction

  • @Rusty_WashR
    @Rusty_WashR Рік тому

    Nice work. Thanks!

  • @durarara911
    @durarara911 2 роки тому +2

    Amazingly explained!

    • @Roboflow
      @Roboflow  2 роки тому

      Glad it was helpful!

  • @XiaoZhao-d4j
    @XiaoZhao-d4j 6 місяців тому

    AP (of a single class) is caculated for a fixed IoU, right? Because a P-R value is dependent on confidence and IoU (two factors). By computing the P-R curve, only confidence is changed (IoU is fixed).

  • @diogenesia376
    @diogenesia376 Рік тому +1

    Thank you very much

    • @Roboflow
      @Roboflow  Рік тому +1

      You welcome 🙏🏻

  • @nitinbommi1867
    @nitinbommi1867 3 роки тому

    Can I get the link to the paper that introduced mAP?

  • @kokebdese4787
    @kokebdese4787 4 роки тому

    Can I get the code to calculate them?

    • @legohistory
      @legohistory 2 роки тому +1

      use tensorflow for that

    • @abbasalsiweedi9019
      @abbasalsiweedi9019 Рік тому

      @@legohistory isn't calculated directly inside google colab algorithm folders?

    • @legohistory
      @legohistory Рік тому

      @@abbasalsiweedi9019 I do not understand. What do you mean?

  • @tsvigo11_70
    @tsvigo11_70 Місяць тому

    Серьёзные приложения нельзя делать на Python потому что он потому что он внутри себя использует числа с плавающей запятой. На Python можно только поиграться поучиться.