Kan Academy: Intro to Colimits

Поділитися
Вставка
  • Опубліковано 22 лис 2024

КОМЕНТАРІ • 91

  • @Kebabrulle4869
    @Kebabrulle4869 17 днів тому +103

    Utterly incomprehensible, thank you

    • @jfb-
      @jfb- 17 днів тому +20

      you mean mprehensible

  • @NStripleseven
    @NStripleseven 17 днів тому +66

    Commenting after 16 minutes so it’s plausible I finished the video even though in reality I just started it

  • @wewladstbh
    @wewladstbh 17 днів тому +11

    impressive very nice... now lets see the homotopy colimits.... look at that subtle geometric realisation... the tasteful topology of it... my god... it even has an adjoint

  • @fcw2bom
    @fcw2bom 17 днів тому +45

    wait a second, has the youtube algorithm duped me into sitting through an entire semester of category theory?

  • @DinoMomPlays
    @DinoMomPlays 17 днів тому +46

    Limits are scissors, whereas Colimits are glue (unless you are in the opposite category).

    • @asdfghyter
      @asdfghyter 7 днів тому +1

      I am rubber, you are a coequalizer!

  • @demonicdrn3037
    @demonicdrn3037 17 днів тому +25

    G++, I have had a really, really rocky relationship with category theory. But now that I'm decaying through scheme theory, I need to get much more comfortable with it, and I cannot overstate how useful these videos have been. Even your other videos have revolutionized how I think, and just given me a lot of education. In other words, thank you so much, and please don't stop.

  • @zyansheep
    @zyansheep 17 днів тому +28

    This time on... Reversing the Arrows!
    Today's episode: The Colimit

  • @violetsweet1660
    @violetsweet1660 17 днів тому +11

    Going to give myself a pat on the back for seeing the matrix generators and changing my guess to infinite elements because, as I thought, in formal terms, "that 1 in the anti-diagonal looks like it is going places."

    • @Dr_Y_Doodle
      @Dr_Y_Doodle 16 днів тому

      I thought the 'opposite' of finite 4 things is infinitely many things.

  • @user-lh2fr6xy1o
    @user-lh2fr6xy1o 17 днів тому +7

    Shef as a jr cs student i live for these videos they’re so funny and also presented in a great way

  • @ZeroPlayerGame
    @ZeroPlayerGame 17 днів тому +12

    Oh, so in the intuitionistic type theory, the equalizers would be subtypes, and coequalizers would be quotient types! Thank you (g+)+

  • @mashtonish
    @mashtonish 14 днів тому +2

    Just make sure not to unclick yourself.

  • @alexandersanchez9138
    @alexandersanchez9138 17 днів тому +5

    These videos are incredible. I’ve recommended this one, in particular, to all my friends.

  • @pra.
    @pra. 14 днів тому +2

    I was expecting the limits video in reverse ngl

  • @wingless_avian
    @wingless_avian 16 днів тому +4

    Just wanna let you know that your videos fucking rock! I forever grateful to UA-cam for recommending your video about monads to me.

  • @Мистеррозовый-ъ4р
    @Мистеррозовый-ъ4р 15 днів тому +1

    It is the best math content on youtube i have ever seen

  • @anyboch
    @anyboch 16 днів тому +2

    why tf do i watch these videos bru, another banger as always

  • @mariogarfart5720
    @mariogarfart5720 13 днів тому +4

    Colimit : for any ε < 0…

  • @RandomBurfness
    @RandomBurfness 17 днів тому +5

    What a great way to wake up! A Sheafification of G video! This is just what I needed!

  • @qexat
    @qexat 17 днів тому +13

    gaslighting myself that I understand all of that. I even faked laughing to the jokes

  • @JPK314
    @JPK314 14 днів тому +2

    When do we get a video on the meaning of the sheafification of G?

  • @MrJakobLaich
    @MrJakobLaich 17 днів тому +14

    regnab rehtona gnikam rof sknaht ,ebutuoy no tnemmoCoC a siht llaC

  • @Vannishn
    @Vannishn 16 днів тому +1

    Merci pour cette vidéo ! Le rythme est soutenu du coup a revoir haha mais waouw c'est super bien expliqué et très détaillé !

  • @incertia
    @incertia 17 днів тому +5

    another banger by big g

  • @thezipcreator
    @thezipcreator 17 днів тому +13

    2:56 rm: cannot remove '/': Operation not permitted

  • @groethendieck
    @groethendieck 17 днів тому +2

    every thing is a Kan extension, hope it is the next video in this series 🤓

    • @Noname-67
      @Noname-67 17 днів тому +3

      The series is called "Kan academy", so it's possible. But given that he has never made a video about sheaf, so who knows.

  • @zakkatz9144
    @zakkatz9144 17 днів тому +4

    Keep up the category puns. The initial object in your category of collection of fans is certainly a zero object

  • @funktorial
    @funktorial 17 днів тому +1

    in my experience, one trouble about learning/teaching category theory is that it's a joint generalization of the theory of monoids and the theory of posets and lattices, both of which people often don't know too much about. (co)limits are much less scary if you already know about meets and joins, (co)presheaves are much less scary if you already know about left and right modules/actions of a monoid, etc etc.

  • @pauselab5569
    @pauselab5569 17 днів тому +2

    3:15 I feel like colimits are much easier than limits at least in the special case of direct limits. Just in general monomorphisms seem easier to me than epimorphisms and profinite groups are much more intuitive than homology stuff. direct limit >> projective/inverse limit

  • @lisyarus
    @lisyarus 17 днів тому +1

    My new favourite youtube channel, yay

  • @MagicGonads
    @MagicGonads 17 днів тому +2

    The Coextension of Kan

  • @leonsteffens7015
    @leonsteffens7015 11 днів тому

    Dear G, I love your videos!

  • @mrtthepianoman
    @mrtthepianoman 17 днів тому

    Excellent as always!

  • @glorialee-goldthorpe1007
    @glorialee-goldthorpe1007 17 днів тому

    Welcome back, another great video 😊

  • @delec9665
    @delec9665 17 днів тому +1

    could you do a specific video on category theory and generic co-objects ?

  • @natelarper2650
    @natelarper2650 15 днів тому +1

    Yo, we getting a video on topoi next??????

  • @Alceste_
    @Alceste_ 7 днів тому

    I find this a bit hard to follow, I just wish there were some arrows or something to direct my attention.

  • @tl4872
    @tl4872 17 днів тому +2

    Category Theory is life.

  • @Dr_Y_Doodle
    @Dr_Y_Doodle 16 днів тому +1

    Having cointellect, I'm still in the category of upsets 😞

  • @ppppppppppppppppppppppp7
    @ppppppppppppppppppppppp7 17 днів тому +1

    another (g+)+ banger

  • @drdca8263
    @drdca8263 14 днів тому +1

    10:15 : is this “because” {true,false} is (up to isomorphism) the powerset of the singleton set \ast ?

    • @SheafificationOfG
      @SheafificationOfG  14 днів тому +1

      In a way! The contravariant powerset functor is essentially its own adjoint, so maps X -> P(Y) naturally correspond to maps Y -> P(X). Taking Y to be the singleton, we see that maps X -> P(*) correspond to elements of P(X).
      (There may be some circularity in this argument.)

    • @drdca8263
      @drdca8263 14 днів тому

      @ thanks!

  • @Dr_Y_Doodle
    @Dr_Y_Doodle 16 днів тому +1

    geeafification of sheaf when

  • @Vaaaaadim
    @Vaaaaadim 17 днів тому +4

    10:18 eyo G why you changed the law of the excluded middle bit from what it was in past videos.

    • @SheafificationOfG
      @SheafificationOfG  17 днів тому +7

      I'm the one assuming it this time 🙃

    • @asdfghyter
      @asdfghyter 7 днів тому

      @@SheafificationOfG you did that in your last video too though ;)

  • @VincentKun
    @VincentKun 17 днів тому +3

    Wait limit was not that easy thing in analysis why he's speaking in monad language

  • @qschroed
    @qschroed 16 днів тому

    Damn this is great thank you

  • @CasualGraph
    @CasualGraph 17 днів тому +1

    commenting now while the video is only 8 minutes old so he knows I haven't finished it yet lol

  • @esphix
    @esphix 16 днів тому

    15:12 *"now that I have an understanding..."

  • @berlinisvictorious
    @berlinisvictorious 17 днів тому

    Kan academy gets me every time lol

  • @denizgoksu9868
    @denizgoksu9868 17 днів тому

    This was truly our Lan Academy.
    Ran Academy when? Wait...

  • @kyay10
    @kyay10 17 днів тому +2

    Your explanation of colimits gluing things together feels vaguely reminiscent of unfolds, and thus comonads? Is this a false intuition?

  • @davethesid8960
    @davethesid8960 13 днів тому

    6:40 - I know your tricks by now, so I answered correctly 😝

  • @callowaysutton
    @callowaysutton 17 днів тому

    Love it

  • @hamzasouidi7161
    @hamzasouidi7161 17 днів тому

    keep up the good work ❤💯

  • @damyankorena
    @damyankorena 17 днів тому +2

    But by assuming Ω(true;false) did you not assume the law of the excluded middle??
    Edit: you did 😠😠

  • @minirop
    @minirop 17 днів тому +1

    will those jokes co-ntinue?

  • @Canadian_Teemo
    @Canadian_Teemo 16 днів тому

    7:53 My guess is the next video is gonna be about coelements
    Edit: nvm, he explained it 10 seconds later

  • @nataliemarks7297
    @nataliemarks7297 17 днів тому

    clang is a c compiler, you should be compared clang++ to g++ rather than clang to g++

  • @columbus8myhw
    @columbus8myhw 13 днів тому

    Wait you never finished the monoid example

  • @niklasarppe3882
    @niklasarppe3882 17 днів тому

    What's your background in math?

    • @SheafificationOfG
      @SheafificationOfG  17 днів тому +2

      Misspent my youth doing a PhD in abstract homotopy theory 😭

    • @quantumsoul3495
      @quantumsoul3495 16 днів тому

      ​@@SheafificationOfG *cospent

  • @GnarGnaw
    @GnarGnaw 17 днів тому +1

    I coliked the video

  • @quantumsoul3495
    @quantumsoul3495 16 днів тому

    Hijacking this comment section to ask you to use dark mode for code snippets for my poor eyes, languages like scala rust and gleam would be better fit than c++ imo also

  • @anselmschueler
    @anselmschueler 17 днів тому +1

    I would still like to know what the fuck a comonoid is

    • @viliml2763
      @viliml2763 17 днів тому +1

      It's a coset equipped with a coassociative binary cooperation and a coidentity coelement.

  • @VaviVove
    @VaviVove 15 днів тому

    Why tf the end message is in French?

  • @heh2393
    @heh2393 17 днів тому

    Is this a cochannel

    • @rcobbable
      @rcobbable 17 днів тому

      cocochannel

    • @heh2393
      @heh2393 17 днів тому +1

      @@rcobbable cocomelon 🤯

  • @getpunned
    @getpunned 14 днів тому

    Cokan academy

  • @trwn87
    @trwn87 17 днів тому +2

    I love fake endings... 😅

  • @petrosthegoober
    @petrosthegoober 11 днів тому

    aaaaaAAAAAAAAHAHHHHHHHHHHHHhhhhhhahaha haa. ha. goddammit. He got me again.

  • @reo101
    @reo101 17 днів тому

    kino

  • @dimchen99
    @dimchen99 17 днів тому

    Skib

  • @sequentiacyclica
    @sequentiacyclica 12 днів тому +1

    honestly not that hard to understand, we should teach third graders this and see what happens

  • @pzkmpfIV
    @pzkmpfIV 17 днів тому

    stop