Kan Academy: Intro to Colimits

Поділитися
Вставка
  • Опубліковано 10 січ 2025

КОМЕНТАРІ • 99

  • @Kebabrulle4869
    @Kebabrulle4869 2 місяці тому +134

    Utterly incomprehensible, thank you

    • @jfb-
      @jfb- 2 місяці тому +26

      you mean mprehensible

  • @NStripleseven
    @NStripleseven 2 місяці тому +81

    Commenting after 16 minutes so it’s plausible I finished the video even though in reality I just started it

  • @fcw2bom
    @fcw2bom 2 місяці тому +64

    wait a second, has the youtube algorithm duped me into sitting through an entire semester of category theory?

  • @demonicdrn3037
    @demonicdrn3037 2 місяці тому +31

    G++, I have had a really, really rocky relationship with category theory. But now that I'm decaying through scheme theory, I need to get much more comfortable with it, and I cannot overstate how useful these videos have been. Even your other videos have revolutionized how I think, and just given me a lot of education. In other words, thank you so much, and please don't stop.

  • @DinoMomPlays
    @DinoMomPlays 2 місяці тому +57

    Limits are scissors, whereas Colimits are glue (unless you are in the opposite category).

    • @asdfghyter
      @asdfghyter Місяць тому +2

      I am rubber, you are a coequalizer!

  • @mariogarfart5720
    @mariogarfart5720 2 місяці тому +16

    Colimit : for any ε < 0…

  • @zyansheep
    @zyansheep 2 місяці тому +33

    This time on... Reversing the Arrows!
    Today's episode: The Colimit

  • @wewladstbh
    @wewladstbh 2 місяці тому +18

    impressive very nice... now lets see the homotopy colimits.... look at that subtle geometric realisation... the tasteful topology of it... my god... it even has an adjoint

  • @ZeroPlayerGame
    @ZeroPlayerGame 2 місяці тому +17

    Oh, so in the intuitionistic type theory, the equalizers would be subtypes, and coequalizers would be quotient types! Thank you (g+)+

  • @alexandersanchez9138
    @alexandersanchez9138 2 місяці тому +8

    These videos are incredible. I’ve recommended this one, in particular, to all my friends.

  • @user-lh2fr6xy1o
    @user-lh2fr6xy1o 2 місяці тому +9

    Shef as a jr cs student i live for these videos they’re so funny and also presented in a great way

  • @violetsweet1660
    @violetsweet1660 2 місяці тому +17

    Going to give myself a pat on the back for seeing the matrix generators and changing my guess to infinite elements because, as I thought, in formal terms, "that 1 in the anti-diagonal looks like it is going places."

    • @Dr_Y_Doodle
      @Dr_Y_Doodle 2 місяці тому +1

      I thought the 'opposite' of finite 4 things is infinitely many things.

  • @qexat
    @qexat 2 місяці тому +18

    gaslighting myself that I understand all of that. I even faked laughing to the jokes

  • @RandomBurfness
    @RandomBurfness 2 місяці тому +7

    What a great way to wake up! A Sheafification of G video! This is just what I needed!

  • @anyboch
    @anyboch 2 місяці тому +3

    why tf do i watch these videos bru, another banger as always

  • @Мистеррозовый-ъ4р
    @Мистеррозовый-ъ4р 2 місяці тому +1

    It is the best math content on youtube i have ever seen

  • @wingless_avian
    @wingless_avian 2 місяці тому +5

    Just wanna let you know that your videos fucking rock! I forever grateful to UA-cam for recommending your video about monads to me.

  • @incertia
    @incertia 2 місяці тому +7

    another banger by big g

  • @thezipcreator
    @thezipcreator 2 місяці тому +13

    2:56 rm: cannot remove '/': Operation not permitted

  • @MrJakobLaich
    @MrJakobLaich 2 місяці тому +16

    regnab rehtona gnikam rof sknaht ,ebutuoy no tnemmoCoC a siht llaC

  • @DrMcCrady
    @DrMcCrady 18 днів тому

    Your vids always kill me, top notch jokes and memes.

  • @lisyarus
    @lisyarus 2 місяці тому +1

    My new favourite youtube channel, yay

  • @Vannishn
    @Vannishn 2 місяці тому +1

    Merci pour cette vidéo ! Le rythme est soutenu du coup a revoir haha mais waouw c'est super bien expliqué et très détaillé !

  • @funktorial
    @funktorial 2 місяці тому +1

    in my experience, one trouble about learning/teaching category theory is that it's a joint generalization of the theory of monoids and the theory of posets and lattices, both of which people often don't know too much about. (co)limits are much less scary if you already know about meets and joins, (co)presheaves are much less scary if you already know about left and right modules/actions of a monoid, etc etc.

  • @pauselab5569
    @pauselab5569 2 місяці тому +2

    3:15 I feel like colimits are much easier than limits at least in the special case of direct limits. Just in general monomorphisms seem easier to me than epimorphisms and profinite groups are much more intuitive than homology stuff. direct limit >> projective/inverse limit

  • @JPK314
    @JPK314 2 місяці тому +3

    When do we get a video on the meaning of the sheafification of G?

  • @natelarper2650
    @natelarper2650 2 місяці тому +3

    Yo, we getting a video on topoi next??????

  • @zakkatz9144
    @zakkatz9144 2 місяці тому +4

    Keep up the category puns. The initial object in your category of collection of fans is certainly a zero object

  • @leonsteffens7015
    @leonsteffens7015 2 місяці тому

    Dear G, I love your videos!

  • @pra.
    @pra. 2 місяці тому +3

    I was expecting the limits video in reverse ngl

  • @glorialee-goldthorpe1007
    @glorialee-goldthorpe1007 2 місяці тому

    Welcome back, another great video 😊

  • @groethendieck
    @groethendieck 2 місяці тому +2

    every thing is a Kan extension, hope it is the next video in this series 🤓

    • @Noname-67
      @Noname-67 2 місяці тому +3

      The series is called "Kan academy", so it's possible. But given that he has never made a video about sheaf, so who knows.

  • @drdca8263
    @drdca8263 2 місяці тому +1

    10:15 : is this “because” {true,false} is (up to isomorphism) the powerset of the singleton set \ast ?

    • @SheafificationOfG
      @SheafificationOfG  2 місяці тому +1

      In a way! The contravariant powerset functor is essentially its own adjoint, so maps X -> P(Y) naturally correspond to maps Y -> P(X). Taking Y to be the singleton, we see that maps X -> P(*) correspond to elements of P(X).
      (There may be some circularity in this argument.)

    • @drdca8263
      @drdca8263 2 місяці тому

      @ thanks!

  • @Vaaaaadim
    @Vaaaaadim 2 місяці тому +4

    10:18 eyo G why you changed the law of the excluded middle bit from what it was in past videos.

    • @SheafificationOfG
      @SheafificationOfG  2 місяці тому +8

      I'm the one assuming it this time 🙃

    • @asdfghyter
      @asdfghyter Місяць тому

      @@SheafificationOfG you did that in your last video too though ;)

  • @Dr_Y_Doodle
    @Dr_Y_Doodle 2 місяці тому +2

    Having cointellect, I'm still in the category of upsets 😞

  • @Daniel-nl3ug
    @Daniel-nl3ug 25 днів тому

    Is the fact that Omega = P(*) related to the table displayed at 10:08? Applying P to * -> X gives P(X) -> Omega instead of X -> Omega, so it is not immediately obvious to me whether or not Omega = P(*) is a coincidence. Does anyone have any useful insights on this?

    • @SheafificationOfG
      @SheafificationOfG  25 днів тому +1

      Not sure if this would tickle your fancy, but here's one connection.
      The functor P : Set^op -> Set is basically its own adjoint, which means that functions X -> P(Y) correspond to functions Y -> P(X) in a natural way.
      In particular, subsets of X are elements of P(X), and therefore functions * -> P(X), which then naturally correspond to functions X -> P(*) = Omega.

    • @Daniel-nl3ug
      @Daniel-nl3ug 25 днів тому

      @@SheafificationOfG This certainly tickles my fancy. Thanks! I now think that Omega = P(*) is a incidence.

  • @ShadowKestrel
    @ShadowKestrel Місяць тому

    this video was a coenjoyer of me :3

  • @mrtthepianoman
    @mrtthepianoman 2 місяці тому

    Excellent as always!

  • @delec9665
    @delec9665 2 місяці тому +1

    could you do a specific video on category theory and generic co-objects ?

  • @MagicGonads
    @MagicGonads 2 місяці тому +2

    The Coextension of Kan

  • @davethesid8960
    @davethesid8960 2 місяці тому

    6:40 - I know your tricks by now, so I answered correctly 😝

  • @CasualGraph
    @CasualGraph 2 місяці тому +1

    commenting now while the video is only 8 minutes old so he knows I haven't finished it yet lol

  • @metarestephanois3262
    @metarestephanois3262 6 днів тому

    Can you make a video on abelian categories?

  • @mashtonish
    @mashtonish 2 місяці тому +2

    Just make sure not to unclick yourself.

  • @kyay10
    @kyay10 2 місяці тому +2

    Your explanation of colimits gluing things together feels vaguely reminiscent of unfolds, and thus comonads? Is this a false intuition?

  • @tl4872
    @tl4872 2 місяці тому +2

    Category Theory is life.

  • @esphix
    @esphix 2 місяці тому

    15:12 *"now that I have an understanding..."

  • @Canadian_Teemo
    @Canadian_Teemo 2 місяці тому

    7:53 My guess is the next video is gonna be about coelements
    Edit: nvm, he explained it 10 seconds later

  • @VincentKun
    @VincentKun 2 місяці тому +3

    Wait limit was not that easy thing in analysis why he's speaking in monad language

  • @minirop
    @minirop 2 місяці тому +1

    will those jokes co-ntinue?

  • @Alceste_
    @Alceste_ Місяць тому

    I find this a bit hard to follow, I just wish there were some arrows or something to direct my attention.

  • @badabing3391
    @badabing3391 7 днів тому

    this video makes my ear torturously itchy

  • @nataliemarks7297
    @nataliemarks7297 2 місяці тому +1

    clang is a c compiler, you should be compared clang++ to g++ rather than clang to g++

  • @denizgoksu9868
    @denizgoksu9868 2 місяці тому

    This was truly our Lan Academy.
    Ran Academy when? Wait...

  • @berlinisvictorious
    @berlinisvictorious 2 місяці тому

    Kan academy gets me every time lol

  • @hamzasouidi7161
    @hamzasouidi7161 2 місяці тому

    keep up the good work ❤💯

  • @sequentiacyclica
    @sequentiacyclica 2 місяці тому +3

    honestly not that hard to understand, we should teach third graders this and see what happens

  • @qschroed
    @qschroed 2 місяці тому

    Damn this is great thank you

  • @damyankorena
    @damyankorena 2 місяці тому +2

    But by assuming Ω(true;false) did you not assume the law of the excluded middle??
    Edit: you did 😠😠

  • @ppppppppppppppppppppppp7
    @ppppppppppppppppppppppp7 2 місяці тому +1

    another (g+)+ banger

  • @niklasarppe3882
    @niklasarppe3882 2 місяці тому

    What's your background in math?

    • @SheafificationOfG
      @SheafificationOfG  2 місяці тому +3

      Misspent my youth doing a PhD in abstract homotopy theory 😭

    • @quantumsoul3495
      @quantumsoul3495 2 місяці тому

      ​@@SheafificationOfG *cospent

  • @columbus8myhw
    @columbus8myhw 2 місяці тому

    Wait you never finished the monoid example

  • @Dr_Y_Doodle
    @Dr_Y_Doodle 2 місяці тому +1

    geeafification of sheaf when

  • @anselmschueler
    @anselmschueler 2 місяці тому +1

    I would still like to know what the fuck a comonoid is

    • @viliml2763
      @viliml2763 2 місяці тому +1

      It's a coset equipped with a coassociative binary cooperation and a coidentity coelement.

  • @blarblablarblar
    @blarblablarblar Місяць тому

    ooh, nier automata reference. I see you

  • @VaviVove
    @VaviVove 2 місяці тому

    Why tf the end message is in French?

  • @heh2393
    @heh2393 2 місяці тому

    Is this a cochannel

    • @rcobbable
      @rcobbable 2 місяці тому

      cocochannel

    • @heh2393
      @heh2393 2 місяці тому +1

      @@rcobbable cocomelon 🤯

  • @GnarGnaw
    @GnarGnaw 2 місяці тому +1

    I coliked the video

  • @quantumsoul3495
    @quantumsoul3495 2 місяці тому

    Hijacking this comment section to ask you to use dark mode for code snippets for my poor eyes, languages like scala rust and gleam would be better fit than c++ imo also

  • @callowaysutton
    @callowaysutton 2 місяці тому

    Love it

  • @petrosthegoober
    @petrosthegoober 2 місяці тому

    aaaaaAAAAAAAAHAHHHHHHHHHHHHhhhhhhahaha haa. ha. goddammit. He got me again.

  • @trwn87
    @trwn87 2 місяці тому +2

    I love fake endings... 😅

  • @getpunned
    @getpunned 2 місяці тому

    Cokan academy

  • @reo101
    @reo101 2 місяці тому

    kino

  • @dimchen99
    @dimchen99 2 місяці тому

    Skib

  • @pzkmpfIV
    @pzkmpfIV 2 місяці тому

    stop