Can you find area of the Green shaded region? | (Square) |

Поділитися
Вставка
  • Опубліковано 25 січ 2025

КОМЕНТАРІ • 50

  • @alanthayer8797
    @alanthayer8797 21 день тому +3

    Awesome breakdown sir so Thanku for these daily exercises!

    • @PreMath
      @PreMath  21 день тому

      Glad you like them!
      You are very welcome!
      Thanks for the feedback ❤️

  • @Ramachandra.J.Kulkarni
    @Ramachandra.J.Kulkarni 18 днів тому

    Enjoyed a lot by solving & knowing your problems. Thanks a lot sir

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 21 день тому +2

    Enjoyed

    • @PreMath
      @PreMath  21 день тому

      Glad to hear that!
      Thanks for the feedback ❤️

  • @jamestalbott4499
    @jamestalbott4499 21 день тому +1

    Thank you!

    • @PreMath
      @PreMath  18 днів тому

      You are very welcome!
      Thanks for the feedback ❤️

  • @MdShahriarHossain-l1n
    @MdShahriarHossain-l1n 21 день тому +1

    i watch your videos everyday, your problems are really amazing! But if you don't mind, could you please come with more hard problems? It would be more helpful for me to take my skills to the next level. Thank you!

    • @PreMath
      @PreMath  21 день тому +1

      Glad to hear that!
      You are very welcome!
      Thanks for the feedback ❤️

  • @alexundre8745
    @alexundre8745 21 день тому +2

    Bom dia Mestre.
    Não acredito q acertei
    Aprendi Geometria graças às vossas aulas
    Deus lhe Abençoe

    • @PreMath
      @PreMath  21 день тому

      Hello dear❤️😀
      You are very welcome!
      Thanks for the feedback ❤️

  • @aranyasaha8418
    @aranyasaha8418 21 день тому

    Soo great
    This channel is so nice
    Can you share other math problems except geometry pls

    • @PreMath
      @PreMath  18 днів тому

      Thanks for the feedback! I'm glad you like the channel. I will be sure to post some more math problems soon. ❤️

  • @zawatsky
    @zawatsky 21 день тому +1

    Диагональ квадрата равна радиусу, значит, сторона будет r/√2. Площадь треугольника r²/(2√2)=2√2⇔r²=(2√2)²⇔r=2√2. Тогда сторона а=2, площадь 4, а её половина - снова 2. Площадь сегмента равна четверти полукруга или ¹/₈ круга, т. е. πr²/8=8π/8=π. Отнимаем нашу половинку (совпадает по диагонали с сегментом): π-2.

    • @PreMath
      @PreMath  18 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @murdock5537
    @murdock5537 21 день тому +1

    Nice! ar = 4√2; a = r√2/2 → r = 2√2 → a = 2 → area AFE = π - 2√2 + 2(√2 - 1 ) = π - 2

    • @PreMath
      @PreMath  18 днів тому +1

      Excellent!
      Thanks for sharing ❤️🙏

  • @crazylegskc
    @crazylegskc 17 днів тому

    Overthought this one WAY too much! After mulling it over for an hour and getting nowhere, I finally realized that the diagonal of the square was equal to the radius of the semicircle. After I realized that, it was a piece of cake.

  • @himo3485
    @himo3485 21 день тому +1

    EO=OB=r EF=FO=OD=DF=r/√2 r*r/√2*1/2=2√2 r=2√2
    Green shaded area = 2√2*2√2*π*45/360 - 2*2*1/2 = π - 2(cm²)

    • @PreMath
      @PreMath  21 день тому

      Excellent!
      Thanks for sharing ❤️

  • @santiagoarosam430
    @santiagoarosam430 21 день тому +1

    OF=a---> Radio =r=a√2---> Amarillo =a*a√2/2=2√2---> a=2--->r²=8---> Verde =(Sector circular 45º)-(FEDO/2) =(πr²/8)-(a²/2) =(π-2) cm².
    Gracias y saludos

    • @PreMath
      @PreMath  21 день тому

      Excellent!
      Thanks for sharing ❤️

  • @cyruschang1904
    @cyruschang1904 21 день тому +1

    Radius = r and square side length = x
    r = diagonal of the square, so r = x√2
    2√2 cm^2 = (r)(x)/2 = (x^2)(√2)/2 => x = 2 cm, r = 2√2 cm
    Green area = (r^2)π/8 - (x^2)/2 = ((8)π/8 - 2) cm^2 = (π - 2) cm^2

  • @AmirgabYT2185
    @AmirgabYT2185 21 день тому +2

    S=π-2≈1,14 cm²

    • @PreMath
      @PreMath  21 день тому +1

      Excellent!
      Thanks for sharing ❤️

  • @prossvay8744
    @prossvay8744 21 день тому +3

    Green shaded area=(π-2)cm^2.❤❤❤

    • @PreMath
      @PreMath  21 день тому +1

      Excellent!
      Thanks for sharing ❤️

  • @marioalb9726
    @marioalb9726 21 день тому +1

    Yellow triangle:
    A = ½bh = ½R.s = 2√2 cm²
    R.s = 4√2 cm²
    Radius of circle:
    R = s√2
    R²= Rs√2= (4√2)√2= 8 cm²
    Green Area: (Half circular segment)
    A = ½[½R²(90°-sin90°)] = ¼ R² (π/2-1)
    A = π-2 = 1,1416 cm² ( Solved √ )

    • @PreMath
      @PreMath  18 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 21 день тому +1

    lr/2=2√2...(r=√2l)...=> l=2,r=2√2..Agreen=πr^2/2-Asett(135°)-l^2/2=πr^2/2-(3/8)πr^2-4/2=(π/8)r^2-2=π-2

    • @PreMath
      @PreMath  21 день тому

      Excellent!
      Thanks for sharing ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 21 день тому +1

    The side lenght c of the square is R/sqrt(2), with R the radius of the circle. The area of the yellow triangle is (1/2).c.R = (sqrt(2)/4).(R^2)
    So we have ((sqrt(2)/4).(R^2) = 2.sqrt(2), and then (R^2) = 8 and R = 2.sqrt(2).
    Angle AOE = 45°, so the area of the sector AOE is Pi.(R^2).(45/360) = Pi. 8.(1/8) = Pi. The area of the triangle A=EFO is (1/2).(c^2) = (1/2).(2^2) = 2.
    So, finally, the green area is Pi - 2.

    • @PreMath
      @PreMath  21 день тому

      Excellent!
      Thanks for sharing ❤️

  • @nenetstree914
    @nenetstree914 21 день тому +1

    Pi-2

    • @PreMath
      @PreMath  21 день тому

      Excellent!
      Thanks for sharing ❤️

  • @quigonkenny
    @quigonkenny 21 день тому +1

    As OE is the diagonal of square ODEF and OE = r, then the side length of ODEF is r/√2. As ∠AOE = 45°, then as the green shaded area is equal to the area of sector AOE minus the area of triangle ∆EFD, then:
    Green shaded area:
    Aɢ = (45°/360°)πr² - bh/2
    Aɢ = πr²/8 - (r/√2)²/2
    Aɢ = πr²/8 - r²/4 = r²(π-2)/8 --- [1]
    Yellow triangle ∆DOB:
    Aʏ = bh/2 = r(r/√2)/2
    2√2 = r²/2√2
    r² = 2√2(2√2)
    r = 2√2 --- [2]
    Aɢ = (2√2)²(π-2)/8

    • @PreMath
      @PreMath  21 день тому

      Excellent!
      Thanks for sharing ❤️

  • @wackojacko3962
    @wackojacko3962 21 день тому +1

    Shapes, sizes, and drop dead curves... I'm gonna hit the beach when the sun comes up! Practice doin maths in my head. 😊

    • @phungpham1725
      @phungpham1725 21 день тому +1

      😅

    • @PreMath
      @PreMath  21 день тому +1

      Enjoy the beach! ☀️🏖️
      Thanks for the feedback ❤️

  • @unknownidentity2846
    @unknownidentity2846 21 день тому +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    The triangle OEF is a right triangle. With r being the radius of the semicircle and s being the side length of the square we obtain:
    OF² + EF² = OE²
    s² + s² = r²
    2s² = r²
    s² = r²/2
    ⇒ s = r/√2
    From the given area of the yellow right triangle OBD we can conclude:
    A(OBD) = (1/2)*OB*OD = (1/2)*r*s = (1/2)*r*r/√2 = r²/(2√2)
    ⇒ r² = 2√2*A(OBD) = 2√2*(2√2)cm² = 8cm²
    Now we are able to calculate the area of the green region:
    A(green)
    = A(circle sector OAE) − A(right triangle OEF)
    = πr²*(∠AOE/360°) − (1/2)*OF*EF
    = πr²*(∠FOE/360°) − (1/2)*s*s
    = πr²*(arctan(EF/OF)/360°) − (1/2)*s²
    = πr²*(arctan(s/s)/360°) − (1/2)*r²/2
    = πr²*(arctan(1)/360°) − r²/4
    = πr²*(45°/360°) − r²/4
    = πr²/8 − r²/4
    = (π/8 − 1/4)*r²
    = (π/8 − 1/4)*8cm²
    = (π − 2)cm²
    Best regards from Germany

    • @PreMath
      @PreMath  21 день тому

      Excellent!
      Thanks for sharing ❤️

  • @sergioaiex3966
    @sergioaiex3966 21 день тому +1

    Solution:
    Angle AÔE = θ
    Angle AÔE = 45°, since DEFO is a square
    DE = EF = FO = DO = x
    Green Shaded Area (GSA) = Sector AOE Area - ∆ OFE Area
    GSA = θ/360° π r² - ½ x² ... ¹
    So, we must find "x" and radius
    EO = x√2, since DEFO is a square and EO is the radius of the semicircle
    AO = BO = EO = radius = x√2
    Yellow Triangle Area = 2√2 = ½ b h = ½ x√2 . x
    2√2 = ½ x√2 . x
    4√2 = √2 x²
    x² = 4
    x = 2
    Therefore, AO = BO = EO = radius = 2√2
    Substituting in Equation ¹
    GSA = 45°/360° π (2√2)² - ½ (2)²
    GSA = 1/8 π . 8 - ½ . 4
    GSA = (π - 2) cm² ✅
    GSA ≈ 1,1415 cm² ✅

    • @PreMath
      @PreMath  18 днів тому

      Excellent!
      Thanks for sharing ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 21 день тому +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) Square Side = a cm
    02) Semicircle Radius = R cm
    03) (a * R) / 2 = 2 * sqrt(2) sq cm ; (a * R) = 4*sqrt(2)
    04) Square Diagonal OE = R ; R = (a * sqrt(2))
    05) Square Side = a = (R * sqrt(2)) / 2
    06) a * R = (4 * sqrt(2))
    07) (R * sqrt(2)) / 2 * R = 4*sqrt(2) ; R^2 * sqrt(2) / 2 = 4*sqrt(2) ; R^2 = 8 ; R = sqrt(8) ; R = 2*sqrt(2) cm
    08) R = 2*sqrt(2) cm
    09) a = 2 cm
    10) Sector [OEA] Area = R^2 * (pi/4) / 2 ; Sector Area = Pi sq cm
    11) Green Shaded Region = (Sector Area) - (Half Square Area) ; NOTE : Square Area = (2 * 2) = 4 sq cm
    12) GSA = (Pi - 2) sq cm
    13) GSA ~ 1,1415 sq cm
    Therefore,
    OUR BEST ANSWER :
    The Green Shaded Area is equal to (Pi - 2) Square Centimeters or approx. equal to 1,1415 Square Centimeters.

    • @PreMath
      @PreMath  21 день тому +1

      Excellent!
      Thanks for sharing ❤️

  • @raya.pawley3563
    @raya.pawley3563 21 день тому +1

    Thank you!

    • @PreMath
      @PreMath  18 днів тому

      You are very welcome!
      Thanks for the feedback ❤️