Feynman's Technique For Dummies

Поділитися
Вставка
  • Опубліковано 5 лис 2024

КОМЕНТАРІ • 13

  • @ron-math
    @ron-math  2 місяці тому +4

    To try everything Brilliant has to offer-free-for a full 30 days, visit brilliant.org/Ron . You’ll also get 20% off an annual premium subscription.

  • @joeeeee8738
    @joeeeee8738 2 місяці тому +25

    Great video but you don't actually state how the technique works at the beginning, you just show how to use it

  • @douglasstrother6584
    @douglasstrother6584 2 місяці тому +4

    That's a great photo at the end!

  • @MikeMagTech
    @MikeMagTech 2 місяці тому +3

    Beautiful video. Thank you!

  • @ericknutson8310
    @ericknutson8310 2 місяці тому +5

    I’m trying to find any document that give rigorous boundaries and conditions that need to be met when using this technique and I can’t find anything. I learned this technique forever ago, I’ve shown it to some of my professors and they have never seen it before.
    Like does I(a,x) need to be continuous for all a(-infty to infty) and x on the interval of integration? Like what structure is needed to ensure this technique works.

    • @satupapan
      @satupapan 2 місяці тому +3

      see e.g. en.wikipedia.org/wiki/Leibniz_integral_rule

  •  2 місяці тому +3

    from Morocco thank you for this clear complete proofs

  • @nazishahmad1337
    @nazishahmad1337 2 місяці тому

    How do you make your videos ?

  • @moonwatcher2001
    @moonwatcher2001 2 місяці тому

    Awesome ❤

  • @tox1678
    @tox1678 2 місяці тому +2

    impossible to follow

    • @elorating
      @elorating 2 місяці тому +1

      1:22

    • @literallydeadpool
      @literallydeadpool 2 місяці тому

      the explanations are good but i can’t wrap my head around how they chose where to insert the *t* variable

    • @chonchjohnch
      @chonchjohnch 2 місяці тому +1

      @@literallydeadpoolyou just need to have the multiplied function evaluate to 1 for t=some value
      What this technique does is sort of elevate the integral to another dimension in terms of parameters, then navigate through