I Solved An Interesting Exponential Equation

Поділитися
Вставка
  • Опубліковано 27 січ 2025

КОМЕНТАРІ • 26

  • @allanmarder456
    @allanmarder456 Рік тому +2

    Sorry everyone, I made a mistake. My error was when I wrote 5^x = (i5)^2. That gives only part of the answer. I can also write 5^x=(-i5)^2. When you solve this
    you get the missing part and taken together the answer in the video is indeed correct. Sorry for the confusion. WHAT FOLLOWS IS ONLY HALF RIGHT!!
    I'm getting a slightly different answer. First i= e^i(pi)/2 and 1=e^2(pi)n*i n an integer. ln(i)=ln(e^(i(pi)/2 + 2(pi)n*i) = i(pi)/2 + 2(pi)n*i = 2*(pi)i * (1/4+n)
    5^x =(i5)^2 Taking ln of both sides: x*ln(5) = 2*(ln(i) +ln(5)) x=2*ln(i)/ln(5) +2 = 2*[ 2*(pi)i * (1/4+n)]/ln(5) +2 =4*(pi)i*(1/4+n)/ln(5) +2 =(pi) [1+4n]/ln(5) +2

    • @mcwulf25
      @mcwulf25 Рік тому

      Interesting. Looks like by working with i rather than-1 then adding 2npi then squaring the expression, the periodicity becomes 4pi. Perhaps this is because you also need to take into account that -i also squares to -1, and you need to include (2n + 3/2) pi.i in your formulation?

    • @mcwulf25
      @mcwulf25 Рік тому

      Or put differently, 5^x = (-5i)^2 too.

    • @allanmarder456
      @allanmarder456 Рік тому +1

      @@mcwulf25Absolutely correct. I blew it! Thanks for the comment

  • @mcwulf25
    @mcwulf25 Рік тому +6

    I first divided by 25 to get an exponent (x-2) on the left and -1 on the right.
    Then proceed as you did, subtracting 2 at the end.

    • @angeluomo
      @angeluomo Рік тому +1

      Brilliant. Makes the method I proposed even simpler.

  • @angeluomo
    @angeluomo Рік тому +2

    Great video! How about this approach? 5^x=-25 -> 5^x = 25*-1 -> xln5=ln25 + ln(-1) -> x=ln25/ln5 + ln(-1)/ln(5) -> x = 2 + (pi*i)/ln5 (since pi*i = ln(-1)). Then pi*i can be expressed as (2n+1)pi*i.

  • @levskomorovsky1762
    @levskomorovsky1762 Рік тому +7

    x ln 5 = ln (-25)
    x ln 5 = ln 25 + ln (-1)
    x ln5 = 2 ln 5 + ln (e^[2n +1)i π]
    x = 2 +[ 2n +1)i π]/ln5

    • @Christian_Martel
      @Christian_Martel Рік тому

      Wow, I didn’t thought of this shortcut!! Thanks!

  • @scottleung9587
    @scottleung9587 6 місяців тому

    Got it!

  • @tamilselvanrascal5956
    @tamilselvanrascal5956 Рік тому +1

    🎉

  • @barakathaider6333
    @barakathaider6333 Рік тому +1

    👍

  • @Ricardo_S
    @Ricardo_S Рік тому

    5^x=-25
    Take logbase5
    x=log5(-25)
    log of a negative is complex
    x=log5(-1)+log5(25)
    remember the change of base for logarithm
    (ln(-1))/ln(5)+log5(5²)
    -1=e^(i(π+2πk))
    ((ln(e^(i(π+2πk))))/(ln(5)))+2
    (i((π+2πk))/(ln(5)))+2
    k its an integer
    x=log5(-25)=((i(π+2πk))/(ln(5)))+2

  • @foxyone3
    @foxyone3 Рік тому

    These are nice puzzles, could you relate them back to the solution of a real problem?

  • @Qermaq
    @Qermaq Рік тому

    This is making me nuts. Maybe someone can shed light.
    The natural numbers : n
    The triangular numbers: (n)(n+1)/2
    The square numbers: n^2
    The pentagonal numbers: essentially, these are the square of n plus the triangle of n minus the integer n.
    Hexagonals are just pentagonal plus square minus triangle. Heptagonals are just hex plus pent minus square. And so on.
    So we can go back a step. If pent(n) = n^2 + (n)(n+1)/2 - n, or pent(n) = sq(n) + tri(n) - int(n) then whatever is below int(n) - let's call it ?(n) = will follow the same pattern as all polygonal numbers above. So sq(n) = tri(n) + int(n) - ?(n), or ?(n) = int(n) + tri(n) - sq(n). So ?(n) = n + (n)(n+1)/2 - n^2.
    This yields a very interesting sequence. Where do I learn more about this?

    • @SyberMath
      @SyberMath  Рік тому

      I'll share two links:
      qcweb.qc.edu.hk/math/Junior%20Secondary/Polygon%20number.htm
      en.wikipedia.org/wiki/Polygonal_number

    • @Qermaq
      @Qermaq Рік тому

      @@SyberMath Will check out, thanks. I realized later that if you invert the triangle numbers 0 1 3 6 10 etc. and start on 1, 1 0 -2 -5 -9 is what you get. So that part is resolved.

  • @fibroidss1194
    @fibroidss1194 Рік тому +1

    I think there’s something that does not really make sense what branch of the logarithm have you chosen? In the complex world, the exponential function is periodic on the imaginary axis it’s not invertible in C, you should consider a specific branch of the function before you can invert it

  • @giuseppemalaguti435
    @giuseppemalaguti435 Рік тому

    x=log(5)-25=iπ/ln5+2

  • @rakenzarnsworld2
    @rakenzarnsworld2 Рік тому +2

    No solutions

  • @alextang4688
    @alextang4688 Рік тому +3

    It is obviously that x is an imaginary number, so we can use the polar form to solve it. 😉😉😉😉😉😉

  • @angeluomo
    @angeluomo Рік тому

    This result shows that: x^((pi*i)/lnx)= -1 = e^(pi*i)