Everything you need to know about Laplace transforms

Поділитися
Вставка
  • Опубліковано 16 гру 2024

КОМЕНТАРІ • 47

  • @danielflood1309
    @danielflood1309 3 роки тому +14

    Explained better than any college professor I've had, well done!

  • @chaotic_spirits
    @chaotic_spirits 3 роки тому +10

    this is the most beautiful explanation I have ever heard, thank you for the contribution to the community.

  • @larry-capinga-9
    @larry-capinga-9 4 роки тому +6

    Hey, I saw your post on reddit and i´m surprised by the quality of your videos. Keep it up!

  • @amanagnihotri6871
    @amanagnihotri6871 3 роки тому

    This channel is life saver. Thank you sir, please keep uploading such informative content

  • @Kobs.A
    @Kobs.A 3 роки тому

    Your analogies are insane

  • @Adhithya2003
    @Adhithya2003 3 роки тому

    Thank you so much , That analogy of PDF -> Word -> PDF was so awesome.

  • @adambrekibirgisson1670
    @adambrekibirgisson1670 3 роки тому +1

    Very well explained, the quality of your videos is on par with the best education channels

  • @jacobseal
    @jacobseal 3 роки тому +2

    Nice video. That backing beat made me want to grab a mic and lay down some soulful 90's raps.

  • @aalperenpolat
    @aalperenpolat 3 роки тому +12

    I wish you could be my Signals and Systems teacher

  • @cyadid
    @cyadid 3 роки тому +1

    Best explanation I have seen ! I wish I could get this when I first learned about Laplace Transform Well done !

  • @mrmatias2618
    @mrmatias2618 2 роки тому

    Thanks man, the PDF example made my day. subscribed.

  • @farwamumtaz176
    @farwamumtaz176 7 місяців тому +1

    Why i didn't find you before.Amazing ❤

  • @The_double_side
    @The_double_side 3 роки тому

    such a confident man .....

  • @stevematson4808
    @stevematson4808 Рік тому

    What model of scope is that behind you?

  • @patrice9480
    @patrice9480 4 роки тому +2

    incredible quality, really !

  • @bunkydunk7500
    @bunkydunk7500 Рік тому

    Great explanation! Much appreciated!

  • @danielsharkoff4013
    @danielsharkoff4013 Рік тому

    Wow what an amazing video.. immediately subscribed after watching.

  • @danielsadeko8499
    @danielsadeko8499 3 роки тому

    Thank you for this explanation

  • @snowwhat3911
    @snowwhat3911 Рік тому

    Am happy I found ur channel

  • @nielscarpentier4616
    @nielscarpentier4616 Рік тому

    Thank you so much!

  • @aravinthdravid9183
    @aravinthdravid9183 2 роки тому

    Buddy which book did you referred to give this easy understanding of Laplace Transform. Kindly share if you have any.

  • @abdelrahmankhalil8878
    @abdelrahmankhalil8878 3 роки тому

    best video on laplace transform ground up deserves better

  • @irfansyahril8511
    @irfansyahril8511 2 роки тому

    Amazing!!

  • @sharadwade987
    @sharadwade987 4 роки тому +1

    Loved it

  • @MisterBinx
    @MisterBinx 3 роки тому

    I remember doing these in differential equations years ago. Now I have to figure them out again in mechanical vibrations.

  • @kennethkyalo3821
    @kennethkyalo3821 2 роки тому

    Excellent

  • @ashwiniked
    @ashwiniked 3 роки тому

    You are a great teacher. Put more informative videos.

  • @theawantikamishra
    @theawantikamishra 3 роки тому

    This is amazing. Subscribed

  • @elaymisgav1879
    @elaymisgav1879 2 роки тому

    Hi thank you very much love your videos!
    I am now taking linear systems course , it feel that I don't understand well the difference between Laplace transform and Fourier, and in addition in which sort of problems I will use which of them. If their is anyway to make it clearer that will be great! thanks again!

    • @carultch
      @carultch 9 місяців тому

      Good question. The Fourier transform is a special case of the Laplace transform, once the system achieves steady state and initial transient behavior settles. Corresponding to the steady state, the real part of the Laplace domain variable s, will approach zero. The s-domain variable will become a purely imaginary number for the Fourier frequency domain, which is j*omega.
      The Fourier transform is a spectrum of sine and cosine waves that model the signal. The Laplace transform is a spectrum of exponentially decaying sine and cosine waves, and some with no decay, that models the behavior of the signal, inclusive of both the initial transient, and the steady state condition.

  • @Kobs.A
    @Kobs.A 3 роки тому +1

    I didn't get the Fourier analogy

  • @to_YouTube
    @to_YouTube 3 роки тому +3

    pls upload practical applications of duality , autocorrelation , sample theorem .... this will help us a lots ...

  • @aspirohk3558
    @aspirohk3558 2 роки тому

    Sample of solving the 'convution' solving in the time domain
    Why do they use s for frequency domain like f could work easy like f(t) t=time but f(f) f=frequency

    • @carultch
      @carultch 9 місяців тому +1

      I believe s is supposed to stand for state. Either that, or it's just a completely arbitrary letter, when other letters were spoken-for when the concept was coined.
      It's more than just frequency, so they don't just use f. It is called complex frequency, because it is a complex number where its real part represents exponential decay, and its imaginary part represents angular frequency.
      It's common to use the trio p/q/r, as the equivalents of s, when using position domain instead of time domain. The Laplace domain variable for x is p, for y is q, and for z is r. The next letter in this group is s, which is the Laplace domain variable that corresponds to t for time.
      Fourier transform could use omega or f, for frequency, or omega for radian frequency, depending on which variant of the transform you use. In the f-world, Fourier transform and inverse Fourier transform, are both identical processes, so it makes it easy to match the pairs. In the omega-world, you accumulate a constant. Some tables will normalize this constant, by including a factor of 1/sqrt(2*pi), so an omega-world Fourier transform is bidirectional with the time domain.

  • @utkarshtrehan9128
    @utkarshtrehan9128 4 роки тому +1

    MVP

  • @anirbanmukherjee5073
    @anirbanmukherjee5073 2 роки тому

    Pls make for Fourier also

  • @amanravan9795
    @amanravan9795 3 роки тому +1

    👍👍

  • @vaibhavpatil9956
    @vaibhavpatil9956 4 роки тому +1

    please explain why it works!!!!!

  • @kratomleaf8937
    @kratomleaf8937 9 місяців тому

    bro where have you gone

  • @Nahash5150
    @Nahash5150 10 місяців тому

    So I want to make a dual band filter that attenuates a signal by 1dB at 250 hz and at 2.5 khz. The Q should be about 0.5

  • @chrisoca958
    @chrisoca958 4 роки тому +1

    Your video is great! I subscribed!! ^_^

  • @DhanushKumark
    @DhanushKumark 3 роки тому

    i wish he would have been my teacher

  • @mahmoudshata1105
    @mahmoudshata1105 2 роки тому

    i just wonder why s equals this ?

    • @carultch
      @carultch 9 місяців тому +1

      The Laplace domain variable s, represents complex frequency. The real part is exponential decays, and the imaginary part is oscillation. The Laplace transform converts a time-domain function into an s-domain function, and that s-domain function is a spectrum of various amplitudes, frequencies, and decay rates, of sine and cosine waves enveloped by exponential decay functions.

  • @el_witcher
    @el_witcher 3 роки тому

    +1 Sub 😉