Completeness

Поділитися
Вставка
  • Опубліковано 29 гру 2024

КОМЕНТАРІ • 38

  • @blackpenredpen
    @blackpenredpen 4 роки тому +15

    No wonder I never feel my life is completed...

  • @andrewgrebenisan6141
    @andrewgrebenisan6141 4 роки тому +32

    Clickbait perfection

  • @Jaojao_puzzlesolver
    @Jaojao_puzzlesolver 4 роки тому +25

    My life is complete.

    • @Bran4901
      @Bran4901 4 роки тому +2

      Ah, but does your life have limits?

  • @NotoriousSRG
    @NotoriousSRG 4 роки тому +20

    I love that you never pronounce “Cauchy” the same way twice lol

  • @punditgi
    @punditgi 4 роки тому +4

    Such an eye opening explanation!

  • @rajivdixitbhaiifollower5055
    @rajivdixitbhaiifollower5055 4 роки тому +4

    Oooo yes! Now my life is completed

  • @vadimpavlov6037
    @vadimpavlov6037 Рік тому +2

    I think the final step relies on the fact that R contains all its lim sups and lim infs, for otherwise the same argument would apply to Q

  • @hauntedmasc
    @hauntedmasc 4 роки тому +8

    This video on completeness is a (Dedekind) cut above the rest!

  • @arijeetsingh9444
    @arijeetsingh9444 4 роки тому +2

    This channel probably has the lowest dislike/like ratio! Way to go Dr. Peyam.

  • @MuPrimeMath
    @MuPrimeMath 4 роки тому +4

    lol that title

  • @rajivdixitbhaiifollower5055
    @rajivdixitbhaiifollower5055 4 роки тому +2

    Great sir ! Well done

  • @plaustrarius
    @plaustrarius 4 роки тому +1

    Yess! It is completed!!

  • @toaj868
    @toaj868 4 роки тому +1

    Can you please explain where this proof breaks down if our range is restricted to Q? Is it that the Limsup and Liminf do not exist?

    • @drpeyam
      @drpeyam  4 роки тому +1

      Pretty much, since a closed subset of a complete space is complete

  • @Galileo2pi
    @Galileo2pi 4 роки тому

    Brilliant as always, mate, just on my birthday, thanks

  • @B_A-tr
    @B_A-tr 4 роки тому +6

    So large amounts of people are cauchy

  • @dmytro_shum
    @dmytro_shum 4 роки тому +3

    Sequence: sum 1/k (harmonic series) for k from 1 to n is not bounded. Is it a Cauchy sequence?

    • @dmytro_shum
      @dmytro_shum 4 роки тому

      @@chemhwa I'm asking the author of the video

    • @dstigant
      @dstigant 4 роки тому +1

      No because it’s not bounded. Consecutive terms (Sn and Sn-1) will be arbitrarily close, but arbitrarily distant terms will not be arbitrarily close. That is , for any N and ep, there exists another integer larger than N, say M, Such that S(M)-S(N) > ep.

    • @dmytro_shum
      @dmytro_shum 4 роки тому

      @@dstigant Another guy, which cant read )))
      I am write that to interest him to make a video about that, because it is much more interesting sequence to use as example

  • @toaj868
    @toaj868 4 роки тому

    A space can be incomplete if we can get an element outside that space in the limit. Is there any other way in which spaces can be incomplete?

    • @drpeyam
      @drpeyam  4 роки тому

      Any metric space can be completed, so no

  • @pocojoyo
    @pocojoyo 4 роки тому

    Dr Peyam, is this part of your Elementary Real Analysis course ? 1 or 2 ?

    • @drpeyam
      @drpeyam  4 роки тому +2

      Yes, and 1

    • @pocojoyo
      @pocojoyo 4 роки тому +1

      @@drpeyam Thanks !

  • @dgrandlapinblanc
    @dgrandlapinblanc 2 роки тому

    Ok. Cool way. Thank you very much.

  • @f3ynman44
    @f3ynman44 4 роки тому

    Where was this video when I took my Analysis Exam one month ago!?
    Still a good video though! 👍

  • @shiina_mahiru_9067
    @shiina_mahiru_9067 4 роки тому

    I have already forgotten the entire proof from my analysis class 😂

  • @late7245
    @late7245 4 роки тому +1

    ■ = the end

  • @coreymonsta7505
    @coreymonsta7505 4 роки тому

    it's not surprising after you see it's just about technicalities regarding where elements lie

  • @henrikfischbeck7198
    @henrikfischbeck7198 7 місяців тому

    ure saying supremum and max as if they where the same. Also u say Q has holes, but then u say Z is complete...
    if it was lim min = lim max i would undetrstand but..
    Uhm?... liminf(q)=sqrt(2)=limsup(q)...?
    Imagine a sequence of rationals getting closer and closer to sqrt2... the two numbers next to sqrt2 are rational ( because between two rationals is an irrational. and vice versa) so a sequence of rationals alternating around sqrt2 getting closer and closer have liminf(q)=sqrt(2)=limsup(q) ? like Q is dense in R so the smallest distance d(q,sqr2). but not if we change supp and inf for min and max..?

  • @vladimirbenitocardenas6012
    @vladimirbenitocardenas6012 4 роки тому +1

    This is an hard idea

  • @gabrielmendozallanes7323
    @gabrielmendozallanes7323 4 роки тому

    UC Irvine is not complete without Dr. Peyam

    • @drpeyam
      @drpeyam  4 роки тому

      Awww, I miss you!!!

  • @jkid1134
    @jkid1134 4 роки тому +1

    You're not building up to p-adics or something, are you? :)

  • @carloshurtado8723
    @carloshurtado8723 4 роки тому

    Completitud

  • @sdonic
    @sdonic 4 роки тому

    limb soup anyone?