Newton's Method for optimization

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ • 5

  • @medad5413
    @medad5413 2 роки тому +3

    I had my "aha moment" here when you multiplied the grad by the delta to calculate the directional derivative and then the resulting term resembled the second term of the multi-variate Taylor series. Thank you very much.

  • @123XTSK
    @123XTSK 2 роки тому +1

    Well visualized coherent presentation of a seemingly easy but really difficult topic for intuitive comprehension.

  • @Falconoo7383
    @Falconoo7383 3 роки тому +2

    great work...

  • @matthewjames7513
    @matthewjames7513 2 роки тому +1

    Thanks for the video! You mention around 5:27 that: 'our hessian will be positive definite whenever our problem is convex'. Why is this the case?

    • @csikjarudi
      @csikjarudi Рік тому

      Convex problem means it can be approximated locally by a convex quadratic function. The quadratic function being convex is equivalent to the hessian being positive definite.