Machine learning - Logistic regression

Поділитися
Вставка
  • Опубліковано 28 гру 2024

КОМЕНТАРІ • 14

  • @harry1357931gmail
    @harry1357931gmail 11 років тому +1

    Excellent Lecture on Logistic Regression....must go through it twice to thrice to absorb it completely....

  • @JackSPk
    @JackSPk 5 років тому

    Maybe I'm misunderstading the 3D plot, but shouldn't it be Y=0={RED} and Y=1={BLUE} at 12:40 ?

  • @18amarage
    @18amarage 8 років тому +4

    I really love your lecture sir...

  • @mrf145
    @mrf145 10 років тому

    Thank you. The lecture is quite easy to understand. You delivered it in very good way.

  • @Jinex2010
    @Jinex2010 8 років тому +3

    22:00 I think J comes Jacobian and H from Hessian

    • @Raven-bi3xn
      @Raven-bi3xn 3 роки тому

      But the question is about the J of cost function.

  • @brianclark4796
    @brianclark4796 11 років тому

    thank you for making this lecture available. very helpful.

  • @anynamecanbeuse
    @anynamecanbeuse 4 роки тому

    This is just blowing my mind I should say.

  • @karthiks3239
    @karthiks3239 11 років тому +1

    This was a nice lecture.. Thank you..
    I was also looking for lectures on Constrained Optimization and Support Vector Machines.. Are these available?

  • @flamingxombie
    @flamingxombie 8 років тому

    Great lecture. By 'simulating' thetas, I am reckoning that we are respawning thetas from regions in proportion to their probabilities?

  • @vermajiutube
    @vermajiutube 6 років тому

    Awesome lecture. How do we estimate w(thetha_i) using MC in bayesian ?

  • @Romis008
    @Romis008 6 років тому

    The prof repeatedly mentions that entropy is the opposite of information... I always thought entropy was expected shannon information content. Am I missing something? By the way, amazing content!

    • @Cindy-md1dm
      @Cindy-md1dm 5 років тому

      Entropy measures the uncertainty, it is negative of information. When the probability goes close to 1, which means more information you get, less uncertainty left.

  • @ar_rahman_90
    @ar_rahman_90 6 років тому

    Superlike!