Evaluating An Algebraic Expression | Two Ways

Поділитися
Вставка
  • Опубліковано 14 січ 2025

КОМЕНТАРІ • 36

  • @chaosredefined3834
    @chaosredefined3834 Рік тому +4

    x + √x = 1
    We want a 1/√x, so divide by √x.
    √x + 1 = 1/√x
    Now, add x to both sides, so the RHS is the desired expression
    x + √x + 1 = x + 1/√x
    Note that x + √x = 1
    1 + 1 = x + 1/√x
    2 = x + 1/√x

  • @mystychief
    @mystychief Рік тому +8

    x+1/sqrt(x) = x+(x+sqrt(x))/sqrt(x) = x+sqrt(x)+1 = 1+1 = 2. So simple.

  • @buldysk1537
    @buldysk1537 Рік тому +4

    substitution for √x = y also works, because then we get a quadratic and solve for y = (1 + √5)/2 (second option is rejected because y > 0) , then just insert it to the second equation and evaluate:
    y^2 + 1/y = (6 - 2√5)/4 + 2/(√5 - 1) = (6 - 2√5)/4 + 2(√5 + 1)/4 = 2

  • @mcwulf25
    @mcwulf25 Рік тому +1

    Useful to remember that phi^2 = phi+1. Saves a lot of √5 arithmetic.

    • @SyberMath
      @SyberMath  Рік тому +2

      Good point!

    • @oahuhawaii2141
      @oahuhawaii2141 Рік тому

      @SyberMath: At 03:45, you used the wrong sign in the rightmost denominator. You have √5-1 instead of √5+1 .

  • @yogesh193001
    @yogesh193001 4 місяці тому

    At 3:45 when you rationalized, it should be root 5 + 1...tiny error. Love your videos bro, thank you!

    • @SyberMath
      @SyberMath  4 місяці тому

      @@yogesh193001 np. Thank you!

  • @Maths_3.1415
    @Maths_3.1415 Рік тому +3

    I like your videos very much :)

    • @SyberMath
      @SyberMath  4 місяці тому

      @@Maths_3.1415 glad to hear that

    • @Maths_3.1415
      @Maths_3.1415 4 місяці тому

      ​@@SyberMath
      😮

  • @jamesharmon4994
    @jamesharmon4994 Рік тому +1

    If sqrt(x) = u, then u CAN be negative since the square root of a positive CAN be negative

    • @jamesharmon4994
      @jamesharmon4994 Рік тому +1

      For example... x + sqrt(x) = 0 if x = 1 and you take the negative square root of 1.

    • @chaosredefined3834
      @chaosredefined3834 Рік тому +2

      @@jamesharmon4994 Nope. The square root of a positive number is defined as a positive number. This prevents the square root function from being multivalued, which makes life easier.

  • @popitripodi573
    @popitripodi573 Рік тому +1

    I solved it with the second method ❤❤

  • @ianchristian7949
    @ianchristian7949 Рік тому +2

    Why does the square root of x have to be greater than 0?

    • @SyberMath
      @SyberMath  Рік тому +1

      The real sqrt(x) needs to be positive by definition. It’s single-valued unlike the complex roots

    • @ianchristian7949
      @ianchristian7949 Рік тому +1

      @@SyberMath But e.g. -2 is a real square root of 4 but it's

    • @akatex8758
      @akatex8758 Рік тому +1

      @@ianchristian7949 sqrt is a function that gives the absolute value

    • @tonybluefor
      @tonybluefor Рік тому +2

      @@ianchristian7949 your comment makes sense. Square root has two solutions one of them less than zero. However, working with the negative one satisfies the two equations and gives the same result. I also think that square root of x doesn't have to be greater than 0.

    • @jamesharmon4994
      @jamesharmon4994 Рік тому +2

      ​@@tonybluefor this is exactly why the quadratic formula has plus/minus the square root - the "minus" accounts for the negative square root.

  • @lawrencejelsma8118
    @lawrencejelsma8118 Рік тому

    Alot simpler than becoming complicated: With knowing x + √x = 1 then x = 1 - √x is the substitution to be used in x + 1/√x or x + 1/(1 - x) = 1 ... Common denominator work on the left side has 1 = (x^2 - x - 1)/(x - 1) ... Cross multiply and x^2 - x - 1 = x - 1 ... x^2 = x ... x = +/- 2 but x= -2 has no real square root and x = 2 is the final answer!

  • @oahuhawaii2141
    @oahuhawaii2141 Рік тому

    x + √x = 1
    We know x > 0, so we divide by √x to get:
    √x + 1 = 1/√x
    Now we can compute this:
    x + 1/√x = ?
    = x + (√x + 1)
    = (x + √x) + 1
    = (1) + 1
    = 2
    Alternatively, we see the equation is quadratic in √x, so we solve with the quadratic formula:
    x + √x = 1
    √x = (-1±√5)/2
    We keep √x > 0:
    √x = (√5-1)/2
    We compute its square and reciprocal:
    x = (3-√5)/2
    1/√x = (√5+1)/2
    Their sum is:
    x + 1/√x
    = (3-√5 + √5+1)/2
    = 2
    We're having so much fun with Φ & φ.

  • @neuralwarp
    @neuralwarp Рік тому +1

    (A) x + sqrt x = 1
    then sqrt x = 1-x
    Substitute in (B)
    x + 1÷(1-x) = ... = 2

  • @dusankacugalj9826
    @dusankacugalj9826 Рік тому +1

    Brži metod je iz jednakosti izraziti koliko je koren iz x i uvrstiti u izraz čiju vrednost računamo.Vrlo brzo se dobije vrednost 2

  • @schrysafis
    @schrysafis 6 місяців тому

    Just divide the whole first equality by sqrt(x) and you get an expression for 1/sqrt(x) just substitute and you get 2.

  • @Ghaith7702
    @Ghaith7702 Рік тому +1

    this video was funny

  • @walterwen2975
    @walterwen2975 Рік тому

    Evaluating An Algebraic Expression: x + √x = 1; x + 1/√x = ?
    First method:
    1/√x = (x + √x)/√x = √x + 1, x + 1/√x = x + √x + 1 = 1 + 1 = 2
    Second method:
    x + √x - 1 = 0, √x = (- 1 ± √5)/2 > 0; x = (3 -/+ √5)/2
    x + 1/√x = (3 -/+ √5)/2 + 2/(- 1 ± √5)] = (3 -/+ √5)/2 + (1 ± √5)/2 = 2

  • @tryingtomakeanamebelike7245

    2, some of the methods I’m seeing in the comments are really overly fancy

  • @SidneiMV
    @SidneiMV 6 місяців тому

    √x = 1 - x
    x = x² - 2x + 1
    x² - 3x + 1 = 0 => x² = 3x - 1
    x + 1/√x = A = x + 1(1 - x) = x - 1(x - 1)
    A = (x² - x - 1)/(x - 1)
    A = (3x - 1 - x - 1)(x - 1)
    A = (2x - 2)/(x - 1)
    *A = 2*

  • @afzalmehdi3269
    @afzalmehdi3269 6 місяців тому

    Please stop saying 2b or not 2b, 2c or not 2c ..... This is very childish and not funny thanks

    • @SyberMath
      @SyberMath  6 місяців тому

      Do u not c what I c? 😁