Random Boolean Networks - Computerphile

Поділитися
Вставка
  • Опубліковано 3 гру 2024

КОМЕНТАРІ • 222

  • @yuunayunohana9920
    @yuunayunohana9920 4 роки тому +105

    This is a cellular automaton. In fact, it is a generalisation of elementary cellular automata assuming you allow a node to be connected to itself. Because in elementary cellular automata the structure is fixed, they are even simpler yet show similar behaviour.

    • @tomburns5231
      @tomburns5231 4 роки тому +10

      Depends how you define it, but they are definitely related. This framework seems a bit more general, though, e.g. no need to keep degree of all vertices the same but a cellular automaton equivalently assumes all degrees/# of neighbours of each vertex/cell is equal since it lies in a grid.

    • @macdonald_duck
      @macdonald_duck 4 роки тому +9

      YES! I thought the same thing: it's like a cellular automaton but not on the plane or space but on some kind of the graph and with irregular neighbourhood.

    • @Majubs
      @Majubs 4 роки тому +1

      That's why first thing this reminded me of was Conway's game of life

    • @jean-francoistremblay7744
      @jean-francoistremblay7744 4 роки тому

      I was actually wandering if they were related. I had just stumbled onto Conway's game of life three days ago and I was stunned by the ressemblance.

    • @k-8520
      @k-8520 4 роки тому

      IMHO. It seems to me that these are just random logical circuits.

  • @TheSteveo909
    @TheSteveo909 4 роки тому +1

    Professor Turner was my lecturer at uni.. the best lecturer I had. The man brought my confidence and programming ability to a new level. Great man, thanks for your help Alex, you was the guy that made programming click for me. You are greatly missed at Hull uni.

  • @vylbird8014
    @vylbird8014 4 роки тому +58

    Doesn't take much thinking to see the rules that would result from this, as it's really a finite state machine:
    - Any RBN, left to develop long enough, will eventually settle into a cycle.
    - For any RBN, there will exist a finite number of possible cycles. This number will be at least one, and at most 2^n where n is the number of nodes.
    - Each cycle likewise will have a minimum length of one (ie, nothing changes each iteration) and a maximum length of 2^n.
    - If you perturb a network, the state in which you place it will be either part of one of those cycles, or a state which will enter one of those cycles after enough iterations. The cycle is is/will-be may or may not be the same cycle you perturbed it from.
    In a sense it is a state machine of state machines: While the RBN itsself has a finite 2^n states, each of these states itsself is part of a much smaller set that contains all the states in a particular cycle and those which lead to it.
    You could generalise it to an infinite number of nodes, each following the same rule defined using relative positions... but then you've just invented a one-dimensional cellular automaton.

    • @Rob9
      @Rob9 4 роки тому +1

      Like a linear feedback shift register eh? Isn't this how pseudo random numbers can be generated?

    • @ModestJoke
      @ModestJoke 4 роки тому

      If each node connects to three other random nodes, wouldn't it be 3^n?

    • @barf92
      @barf92 4 роки тому

      And you can even easily calculate all the states which will (after some iterations) enter one of the states of the cycle.

    • @the1exnay
      @the1exnay 4 роки тому +3

      ModestJoke
      2^n is the maximum length of a cycle because that's the maximum number of unique states and as soon as it returns to a state it has been at before that means it is in a cycle
      The 2 comes from the number of options for a node, it can only either be on or off so 2 options

    • @noamlima9402
      @noamlima9402 3 роки тому

      @@Rob9 so ? FPS can randomise that ?

  • @benben341
    @benben341 4 роки тому +34

    Turing has a paper on these types of networks. google turing intelligent machinery pretty smart guy back in 1948.

  • @Impatient_Ape
    @Impatient_Ape 4 роки тому +2

    Stuart Kauffman's RBN model was introduced slightly before Conway's Game of Life (1967 - 1969). Conway's Game of Life was created in 1970, which is 14 years *before* Stephen Wolfram wrote his paper in 1984 classifying the dynamics of 1-D cellular automata (CA). RBNs are like cellular automata but they don't have a spatial grid/neighborhood associated with how they update, meaning they are more abstract and more powerful than Wolfram's CAs and can therefore demonstrate self-emergent order in the dynamics in complex systems that operate *without* the constraint of a grid. Stephen Wolfram wrote a popular book which gets a lot of attention from a younger generation of scientists and computer scientists, but he has a reputation for talking up his own work while saying very little about whose shoulders he stood on to do it (von Neumann, Ulam, Codd, Conway, and more), as well as the contributions to our knowledge about CAs from other researchers (Toffoli, Margolis, Langton, Packard, and more)

  • @davidharmeyer3093
    @davidharmeyer3093 4 роки тому +39

    "Not too dissimilar" - guy giving a lecture on unnecessarily complex boolean behavior

    • @ekszentrik
      @ekszentrik 4 роки тому +3

      "You can't say that this isn't too dissimilar" isn't what my stance would be.

  • @bengrap0
    @bengrap0 4 роки тому +15

    If you allow more connections between nodes and design your transition rule table you should be able to represent Conway's Game of Life as a Boolean Network. So I'm not too surprised these networks show complex behavior.

    • @ireallyhatemakingupnamesfo1758
      @ireallyhatemakingupnamesfo1758 4 роки тому +4

      It seems like the Game of Life is a very specific case of this, except that there’s an infinite number of nodes in GoL, where as in a random Boolean network there’s an arbitrarily large but still finite set of nodes

    • @psteknyo
      @psteknyo 4 роки тому +1

      I was thinking the same. In addition to what you said, in Conway's Game of Life the node connections are predefined instead of random.

  • @tombandhazko
    @tombandhazko 4 роки тому +97

    Drink every time he says boolean? Friday night sorted.

    • @_aullik
      @_aullik 4 роки тому +8

      He says boolean? And i was wondering why he talks about the random booty network.

    • @sjorsborsoborsobors
      @sjorsborsoborsobors 4 роки тому +3

      bewlean

    • @Xaminn
      @Xaminn 4 роки тому +1

      How about every other time he says boolean, you drink. :)

    • @revenevan11
      @revenevan11 3 роки тому

      Liver all sorted too lol

    • @noamlima9402
      @noamlima9402 3 роки тому

      @@Xaminn haha

  • @kennethstudstill
    @kennethstudstill 4 роки тому +1

    2:15 Does the definition of a random Boolean network require the edges to be ordered? If not, there could be as few as four unique states for three edges. Though, the truth table for a Boolean network with ordered edges can be arranged to function identically to one without.

  • @jako7286
    @jako7286 4 роки тому +7

    Actually, because you have a finite number of states, by the pigeon hole principle, EVERY boolean network repeats eventually, with varying amounts of randomness at the beginning. As soon as you have a single repeated state, everything since the first occurrence of that state becomes the "loop". An interesting problem would be to find the maximal loop or the maximal randomness at the beginning.

    • @RussellTeapot
      @RussellTeapot 4 роки тому +1

      What do you mean for "maximal randomness"?

    • @jako7286
      @jako7286 4 роки тому +2

      @@RussellTeapot I mean, maximum amount of time before the first instance of the first repeated state. For example, in the sequence 1,4,3,6,5,2,7,8,7,8,7,8, maximizing the length of the 1,4,3,6,5,2 part (where there is no obvious discernible pattern without knowing the boolean table that defines the pattern)

    • @RussellTeapot
      @RussellTeapot 4 роки тому +1

      @@jako7286 Oh, I see! Is it a solvable problem? Note that I'm very ignorant in mathematics: my flimsy intuition is that is not possible until you encounter a repeated state or you reach the maximum number of states possible, given the size of the network

    • @jako7286
      @jako7286 4 роки тому +2

      @@RussellTeapot It is possible to brute force solve it with a computer for the 20 nodes and 3 connections per node case. There are no more than about 9.5 billion initial states (probably much much less when you reduce it for symmetry, which I didn't do in that rough calculation) combinations possible. It gets much more difficult the more nodes and the more connections you add though.

  • @dhess34
    @dhess34 4 роки тому

    I like all three of these words as individual topics; a video about all three combined is bound to be fantastic!

  • @ka9dgx
    @ka9dgx 4 роки тому +14

    I like the size of the network he picked... 20 bits, small enough to fit on a text screen, AND small enough to iterate through all the possibilities in a fraction of a second, since there are no hidden states, the longest possible pattern is 2^20, or just over 1 million.

    • @diegamingkatze
      @diegamingkatze 4 роки тому +1

      It is more complex, if you consider the number of possibilities how the 20 nodes are randomly configured with 3 connections to other nodes. Plus the function input to output also adds possibilities.

    • @gkoan
      @gkoan 4 роки тому +4

      @@diegamingkatze I think Mike's point is still correct. Given any set of rules or set of connections, the longest possible pattern is 2^20 cycles long-- and almost certainly shorter. The number of possible patterns (as opposed to their maximum length) is dependent on the factors that you describe: (19 * 18 * 17)^20 different ways to connect the nodes, and then 2^8 different input/output maps.

    • @cadekachelmeier7251
      @cadekachelmeier7251 4 роки тому +1

      It looks like it's still too big to look at every combination fully. There are ncr(19 3) 969 different possibilities to connect each node, so 969^20 graphs. And 8 truth table entries for each graph, so 2^(8*20) possible truth tables for each graph. And 2^20 initial conditions for each of those. So about 8e113 total graphs and initial states.

    • @vylbird8014
      @vylbird8014 4 роки тому +2

      @@gkoan The number of possible patterns is dependent upon the ways the nodes are connected and the input-output map, but you can put bounds on it: It is at minimum one (ie, it iterates through all 2^20 possible states) and at maximum 2^20 (ie, every possible state will lead to itsself).

  • @NikolajLepka
    @NikolajLepka 4 роки тому +11

    It's funny you say you didn't expect the pattern to emerge, but you could totally encode the game of life with this binary system and have it work as expected

  • @smallsnippets
    @smallsnippets 4 роки тому +24

    This system has a finite number of states, so of course there will be repitition after enough iterations...

    • @Alex_Deam
      @Alex_Deam 4 роки тому +11

      There are 2^20 possible states (never mind the number of possible connections between each node!), you wouldn't necessarily expect to find repeating patterns so easily. Also, I'm sure 20 was only picked as an example, I wouldn't be surprised if they examine much bigger networks than this.

    • @JensRiggelsen
      @JensRiggelsen 4 роки тому +7

      Each digit of pi has a finite state (0-9), but no pattern / repetition.

    • @tommy_1446
      @tommy_1446 4 роки тому +8

      @@JensRiggelsen the digits of pi are not a state machine, the next digit is not computed as a function of the prior one.

    • @JensRiggelsen
      @JensRiggelsen 4 роки тому +3

      @@tommy_1446 Ah... Yes, you're right, my bad.

    • @GuyMichaely
      @GuyMichaely 4 роки тому

      The fact that there's a finite number of states does not imply that there must be a cycle

  • @stephenoconnor2403
    @stephenoconnor2403 4 роки тому +1

    The behavior is fascinating, but not that surprising if you look at it from the perspective of the network as a nonlinear dynamical system. However its state might be represented in some mathematical phase space, there may be attractors (settling on a single value) and strange attractors (complex repeating dynamical behavior). The graph nodes and connection rules are a different way to model the recursive equations that one might use to make a fractal, for example. Basically, a different way to view the same phenomenon.

  • @illustriouschin
    @illustriouschin 4 роки тому +1

    This seems like a critical link between Game of Life and Neural Networks. Seems like there is a lot of potential for innovation here.

  • @TheGitGuild
    @TheGitGuild 4 роки тому +32

    Ooo random stuff, I like these the most :)

    • @chairwood
      @chairwood 4 роки тому

      ok mr random generator

    • @noamlima9402
      @noamlima9402 3 роки тому

      @@chairwood rude

    • @chairwood
      @chairwood 3 роки тому

      @@noamlima9402 didnt mean for it to be rude

    • @noamlima9402
      @noamlima9402 3 роки тому

      @@chairwood so its mandatory to you make that ? Cant you feel better without making bad to yourself and others

    • @chairwood
      @chairwood 3 роки тому

      @@noamlima9402 also I don't understand what "so its mandatory to you make that ? " means :( those words dont make sense to me in that order

  • @KraylusGames
    @KraylusGames 4 роки тому +8

    Stephan Wolfram's book "A New Kind of Science" explores these types of systems in great depth. Interestingly, the types of behavior demonstrated here (simple terminating, repetitive/nested, seemingly random, and some combination of the latter two) show up in a LOT of different systems that evolve according to simple rules.

    • @Ben-we7pp
      @Ben-we7pp 4 роки тому +1

      Not knowing much about it, I picked up a copy of his book from Goodwill a few years ago for $1.99. I flip it open and, surprise surprise, he had signed it. Went to look it up online to see if it might be worth something to someone, but the heft to price ratio is just sad - and it's easy to see why - cellular automatons and complexity, very interesting; a full grown man self-ingratiating and expounding established ideas as his own foundational revelations, not so much.

  • @pleasedontwatchthese9593
    @pleasedontwatchthese9593 4 роки тому +3

    It seems like the network falls into these stable patterns. Sometimes these disturbances will knock it into a different pattern, or may not and will return to the original pattern. I think this is a great learning tool.

  • @tocsa120ls
    @tocsa120ls 4 роки тому +22

    I feel bad for Dr. Turner, that scratch-off map will stay like that for a long time it seems :-P

  • @JeoshuaCollins
    @JeoshuaCollins 4 роки тому +7

    It would be interesting to combine this with a survival mechanic. Networks which freeze into some state "die" and those that keep changing "survive" and "multiply", changing a couple random bits. Run a couple hundred generations and see what happens.

  • @MichalKottman
    @MichalKottman 4 роки тому +6

    I'm halfway through and I'm drunk already 🍺

  • @discreet_boson
    @discreet_boson 4 роки тому

    Computerphile makes my day

  • @IznbranahlGoose
    @IznbranahlGoose 4 роки тому

    At 6:10 there IS a repeating pattern you can see.. it takes about 52 steps to repeat.

  • @nonchip
    @nonchip 3 роки тому +1

    that "self healing cyclic behaviour" (imma call it that, no idea if there's a real name for that) sounds like it could make for interesting generative music applications.

  • @thedofflin
    @thedofflin 4 роки тому +1

    tbh it just seems like the randomly assigned truth table biases a certain feedback cycle, is it really that surprising that many systems recover?

  • @maxmusterman3371
    @maxmusterman3371 4 роки тому +1

    Is there some kind of metric that describes the resistance to change? like measures the connections and starting configuration to determine the robustness?

  • @SoulSukkur
    @SoulSukkur 4 роки тому

    6:06
    You actually can see the repeating cycle here. it starts on column 6 and ends on column 58.

  • @williamwells3026
    @williamwells3026 4 роки тому +19

    this more like Wolfram code then Conway's game of life

    • @caw25sha
      @caw25sha 4 роки тому +1

      The set of bits representing the next states is equivalent to the Wolfram Code for elementary cellular automata.

    • @an2qzavok
      @an2qzavok 4 роки тому +1

      I myself thought neural networks.

    • @foo0815
      @foo0815 4 роки тому

      Yes, but Wolfram's automata are potentially infinite.

    • @downstream0114
      @downstream0114 4 роки тому

      This is just game of life with extra steps.

  •  4 роки тому +1

    2:40 The last time I had one tab in Notepad++ is when I installed it for the first time. I need to clean that now.

  • @RuggTomcat
    @RuggTomcat 4 роки тому +27

    The hunting autofocus is making me feel a bit sick

    • @PopeGoliath
      @PopeGoliath 4 роки тому +1

      Watching on a smaller screen or from further away can mitigate this. But yes. Its intrusive.

    • @smallsnippets
      @smallsnippets 4 роки тому +12

      It's called a random boolean zoom effect.

    • @PaaAL
      @PaaAL 4 роки тому

      Exactly!

    • @con-f-use
      @con-f-use 4 роки тому

      ...and the audio is terrible because of the cheap headset.

  • @Rackover95
    @Rackover95 4 роки тому +6

    Please could you allow subtitles one day? :(

  • @daniellambert6207
    @daniellambert6207 4 роки тому

    Does the "repeating pattern" output just shows that random parameters have created an obfuscated 20-bit counter?
    On second thought, I guess it's more than just an obfuscated 20-bit counter. When you increase to 200 or 2000-bit counter, then the repeating patterns are an "interesting / useful" subset of the possible values.

  • @black_platypus
    @black_platypus 4 роки тому

    Now, would that work for _any change_ of these nodes (including changing only some of them) to anything (well, 0 or 1)?
    And: Do those nodes have a significance to the repeating sequence?
    What I'm asking is essentially: Is the "restoration" process agnostic to its target, and is it stable enough to recover something meaningful about the whole "code" when damage such as this (destroying the information in the first 5 bits) occurs?

    • @black_platypus
      @black_platypus 4 роки тому

      Correction: is the "restoration" process agnostic to _the condition of_ its target

  • @thatcreole9913
    @thatcreole9913 4 роки тому

    This is fascinating! Now if only I had a reason to use this in my day job (working as a developer of web services).

  • @Zoidle-doo
    @Zoidle-doo 4 роки тому

    It is interesting that a pattern tends to be resilient to changes in values. I'm curious how resilient it is to changes in the relationships and/or ruleset? I'm inclined to think virtually any change in either of these would be much more likely to permanently change the pattern?

  • @saranchance5650
    @saranchance5650 4 роки тому

    Most interesting to me would be example that after the perturbation the system settles into a new repeating cycle but one with a different period. Doing the flipping of bits is a special case of starting the same network with a different original state. Since the system has no memory, flipping a limited number of bits is just equivalent to restarting with a new fully random origin with the same same connections and truth table. Flipping six bits isn’t less nor more relevant to flipping five or seven. What’s interesting is discovering for a given network design how many different steady states/cycles it supports from all possible inputs. You get an approximation of that when you flip five bits but it is a very shallow exploration of the machine’s properties

  • @RickeyBowers
    @RickeyBowers 4 роки тому +6

    I've experimented with random turing machines on a cyclic space and used inverse compressibility as a metric to find interesting state transition graphs.

    • @RussellTeapot
      @RussellTeapot 4 роки тому

      What is "inverse compressibility"?

    • @GreenBoiler
      @GreenBoiler 4 роки тому

      This is either the funniest comment of all time, or I am dumber than I think. 🤔

    • @RickeyBowers
      @RickeyBowers 4 роки тому +1

      @@GreenBoiler it could be both? I was intending to be quite serious though.

    • @RickeyBowers
      @RickeyBowers 4 роки тому +1

      @@RussellTeapot if it doesn't compress well I assume it's interesting to prioritize my manual effort.

  • @Mr.Beauregarde
    @Mr.Beauregarde 4 роки тому

    I wonder whether the truth table or the connections map is more influential. And to what degree

  • @kosnk
    @kosnk 4 роки тому +1

    Fascinating. Thanks!

  • @NeverBeenToBrisbane
    @NeverBeenToBrisbane 4 роки тому

    What happens if you add a sensor node? Like, one that changes with time and one that changes every time you press a key?

  • @saranchance5650
    @saranchance5650 4 роки тому

    Another cool question is whether there are periods that are impossible for a given number of bits. I’d bet 2^n - 1 is impossible but i don’t know how to prove or for other periods.

  • @khananiel-joshuashimunov4561
    @khananiel-joshuashimunov4561 4 роки тому +1

    The "perturbation leads to the same structure" sounds like a lemma of fixed point theory.

  • @Impatient_Ape
    @Impatient_Ape 4 роки тому

    Most of the system-wide cyclical states are "factorable", consisting of multiple subnetworks, each having their own period, with the total system period being the least common multiple of all the periods.

  • @sciverzero8197
    @sciverzero8197 4 роки тому

    I noticed a pattern immediately in the initial setup of the random truth table.
    It lines up with this rule: if the middle column has a 1 on either side of it, return 1, if the middle column has 0 on both sides return the middle column XOR 1;

    • @stanrogers5613
      @stanrogers5613 4 роки тому

      That's just an example. Both the truth tables for each node and the starting value of each node are randomized on each run.

  • @Ryunigia
    @Ryunigia 4 роки тому

    nice video and all but whats up with the map of the world behind him? it seems off..

  • @PanzerFaustFurious
    @PanzerFaustFurious 4 роки тому +4

    What is going on with middle America, the Mediterranean and Indonesia in that map??

    • @Ekevoo
      @Ekevoo 4 роки тому

      I was askying myself the same

    • @KuZiMeiChuan
      @KuZiMeiChuan 4 роки тому

      I think it might be a map of the last ice age.

    • @mheermance
      @mheermance 4 роки тому

      It's more than that. Look at the isthmus of Panama, it's way too thick.

  • @chaoslab
    @chaoslab 4 роки тому

    Enjoy this video. Very cool.

  • @unblob1532
    @unblob1532 4 роки тому

    Why the repeating patern was unexpected ? There is a finite number of possible states the array of boolean can have, and if the rules stay the same one day it will go back to a state in wich it was prior (maximum loop length is forced to be k out of n no ?)
    edit : even if there is a "mutation", if it hits a prvious state it had before the "mutation" it will go back, the robustnes is finally just the case where two starting states leeds to the same output ?

    • @josipcuric8767
      @josipcuric8767 4 роки тому

      It's surprising that it recocers so quickly but it could be cherrypicked exampels.

  • @henrikjensen3278
    @henrikjensen3278 4 роки тому

    I was thinking 20 bits, i.e. a 20 bits integer. Because the next state always is a direct function of the current state, the first time a number repeats we can see the period time.
    The boolean functions could be a pseudo random number generator, but this requires a long period time and a few other properties of the numbers generated.

  • @mikapeltokorpi7671
    @mikapeltokorpi7671 4 роки тому +2

    GPS PRN codes are generated this way.

  • @charlieangkor8649
    @charlieangkor8649 4 роки тому

    Instructions unclear. Are the 3 nodes always the same or do they change with each tick? Does the table stay the same or change with each tick?

    • @vylbird8014
      @vylbird8014 4 роки тому

      Stays the same, to both questions.

  • @antediest
    @antediest 4 роки тому

    Does anyone know what the map behind him is?

  • @turgutsahin3680
    @turgutsahin3680 4 роки тому

    Wouldn't it be interesting to set each state a different kind of sound and listen throughout the process?

  • @gdclemo
    @gdclemo 4 роки тому

    This reminds me of FPGA programming, if each logic element (node) is a LUT with inputs from N neighbours, feeding into a flip-flop with a global clock. You could write a program to generate Verilog to run random Boolean networks with tens of thousands of elements running at hundreds of MHz. Although I don't think you can have truly random routing in an FPGA, there are limits on the connections between logic elements you can have.

  • @Medan1993
    @Medan1993 4 роки тому

    Doesn't randomness in the output depend on the pseudorandomness of the algorithm used?
    In other words - since under the hood, every randomness generated that is not fed actual random data (such as user mouse movement, electric grid noise, lava lamp pictures etc.) is based on some mathematical function being used, doesn't actually this show up in the end result?

    • @rtg5881
      @rtg5881 4 роки тому

      None of your examples of random data is random, either.

  • @Jack5Official
    @Jack5Official 4 роки тому

    This is the 666th video on this channel. Let that sink in.

  • @kraio-sfu
    @kraio-sfu 4 роки тому +1

    This just seems like the Game of Life with extra steps

  • @tristunalekzander5608
    @tristunalekzander5608 4 роки тому

    Why not just have only two inputs for each node and use basic logic gates for the truth tables?

  • @asdf8asdf8asdf8asdf
    @asdf8asdf8asdf8asdf 4 роки тому

    Interested folks would do well to scan the description of Stuart Kaufman's books "the origins of order" and "at home in the universe" -- any interest at all will be kindled into a roaring flame.
    Thanks for this video

  • @alexandermarvin9536
    @alexandermarvin9536 4 роки тому

    This is very similar to the Ising model used in statistical mechanics. Might be able to use statistical mechanics to describe the behavior of the system.

  • @kenzostaelens1688
    @kenzostaelens1688 4 роки тому

    does math not predict this behaviour as: there are 2^20 different states the network can be in
    so in 2^20+1 itterations you must at least hit a state you have found before so from that point on towards where you see the state again you would get a repeating pattern?

    • @KohuGaly
      @KohuGaly 4 роки тому

      The fact that the pattern repeats is not surprising. The fact that even complicated repeating cycles may be robust (ie. stabilize again to the same cycle, when change is introduced) is the interesting bit.

    • @kenzostaelens1688
      @kenzostaelens1688 4 роки тому

      @@KohuGaly oh, thank you for clarifying that

  • @bombastik87
    @bombastik87 4 роки тому +1

    So, where's the point? It's finite so it always fall into cycles. However it could be stimulating, thank you

    • @YouPlague
      @YouPlague 4 роки тому

      The point is not the cycles, it's the recovery after a "mutation" of a "gene", implying biology could be much simpler than we think.

    • @bombastik87
      @bombastik87 4 роки тому

      Got it, thanks. They are a sort of local discrete minima

  • @omkar_sawant
    @omkar_sawant 4 роки тому

    Could the reason for the repeating patterns be that the computer is not actually truly random and is actually spitting out numbers in some pattern? Maybe the same experiment with a lava lamp or something would be truly random..

  • @Lucas-bf4pw
    @Lucas-bf4pw 4 роки тому

    So network at t + 1 is a function applied to the matrix multiplication of the adjacency matrix and the network at t. (S_{t+1} = f(A * S_t))

  • @user-wt7pi3np1w
    @user-wt7pi3np1w 4 роки тому

    What is that map?

  • @veggiet2009
    @veggiet2009 4 роки тому +4

    So if I go back in time and kill a butterfly... It likely won't have that big of an effect on the timeline... cool

    • @Lttlemoi
      @Lttlemoi 4 роки тому

      Depends on how you go about killing that butterfly.

  • @quaidcarlobulloch9300
    @quaidcarlobulloch9300 4 роки тому +4

    I was looking for something like this, going to write a paper about it

  • @CottonInDerTube
    @CottonInDerTube 4 роки тому

    6:13 ofc you can see a pattern.

  • @marpintado
    @marpintado 4 роки тому

    Mandelbrot sets ?

  • @sokrates297
    @sokrates297 4 роки тому

    Now I'm curious about simulating bonds between elemental materials...

  • @hyperedwin
    @hyperedwin 4 роки тому

    This seems related to Wolfram Physics and his work on hypergraphs and branchial space anyone want to comment on that

  • @ПётрБ-с2ц
    @ПётрБ-с2ц 4 роки тому

    Is the truth table generated on each step? It seems that it isn't.

  • @SomeGuy_83
    @SomeGuy_83 4 роки тому +1

    Alright mate how was your weekend.
    IT was great I played with random boolean values to see what happened 😂😂😂😂😂😂😂😂😂
    I think this guys been locked down for too long hes looking for patterns in random 1's and 0's.

  • @bassamry
    @bassamry 4 роки тому +3

    what this random network is good for? what its real life application could/should be?!

  • @Chief_of_Beef
    @Chief_of_Beef 4 роки тому

    Shout out to hulls best lecturer

  • @endodd_7742
    @endodd_7742 4 роки тому +1

    Of course there is a possibility that repeating patterns could emerge, that's exactly how ring oscillators work. So Random Boolean Networks just show that the technology we've been using for a long time exists, doesn't have any practical use and doesn't prove anything.

    • @vylbird8014
      @vylbird8014 4 роки тому

      This is a finite state mechine. It's not only a possibility that repeating pattern could emerge: It's an inevitability.

    • @endodd_7742
      @endodd_7742 4 роки тому

      @@vylbird8014 true, I guess it os a finite state machine. What I meant by repeating patterns is a sequence of more than one state that repeats rather than every cycle being the same otherwose it's obvious thst that it would repeat.

  • @tramsgar
    @tramsgar 4 роки тому

    Look to control theory for good explanations on system (in)stability.

  • @eturnerx
    @eturnerx 4 роки тому

    Try visualising this in processing.org. It'll make for prettier pictures.

  • @keithcaldwell8524
    @keithcaldwell8524 4 роки тому +2

    Homeostasis, interesting 🤔

  • @JasonDoege
    @JasonDoege 4 роки тому +1

    This seems a lot like an LFSR.

  • @Davo2able
    @Davo2able 4 роки тому

    Boolean every time he says drink

  • @jaulloa21
    @jaulloa21 4 роки тому

    So a computer counts 0,1,0,1 as an array to process its value.

  • @maxfzer0823
    @maxfzer0823 4 роки тому

    Could you use this for encryption?
    It seems like if you start with enought nodes and enought connections it would be very hard to calculate backwards without knowing the start. The starting parameters would be some sort of key in this case.

  • @quaidcarlobulloch9300
    @quaidcarlobulloch9300 4 роки тому

    JFC, I was researching the exact same thing as you.

  • @Ddeletham
    @Ddeletham 4 роки тому +2

    Chaos theory

    • @jecelassumpcaojr890
      @jecelassumpcaojr890 4 роки тому

      anti-chaos, actually. A chaotic system is defined by simple rules but is extremely sensitive to initial conditions so can't be predicted. These systems are also defined by simple rules but are not very sensitive to initial conditions so they give predictable outputs.

    • @Ddeletham
      @Ddeletham 4 роки тому

      @@jecelassumpcaojr890
      How are they not very sensitive to initial conditions? Look at the total difference in results, including ones that are kinda stable in the end.
      Small differences in the initial conditions of the network can suddenly result in a totally unstable network. Or one that repeats. Or a random one.
      The fact that some of them exhibit robustness doesn't refute that either. IMHO it makes it even more interesting and fits with chaos theory as well.

    • @jecelassumpcaojr890
      @jecelassumpcaojr890 4 роки тому

      @@Ddeletham I should have said that binary random networks include some that are not sensitive to initial conditions and so are anti-chaotic. Not all of them have the same behavior, just as not all cellular automata have the same nature.

    • @Ddeletham
      @Ddeletham 4 роки тому

      So, depending on the network, some are chaotic and some are not.
      Makes sense, after all not even the Lorenz System is chaotic for all parameter values.

  • @HAL-9000-
    @HAL-9000- 4 роки тому

    sounds like a game of life with random rules

  • @ujjawalsinha8968
    @ujjawalsinha8968 4 роки тому

    It has CHAOS

  • @quaidcarlobulloch9300
    @quaidcarlobulloch9300 4 роки тому

    It's a dynamic system

  • @jiripodivin5409
    @jiripodivin5409 4 роки тому

    Is that an ice age map behind Alex?

  • @PhonkyARG
    @PhonkyARG 4 роки тому

    Subtítulos?

  • @DangoNetwork
    @DangoNetwork 4 роки тому

    For a moment, I thought this was video for chaos theory...

  • @sabriath
    @sabriath 4 роки тому +1

    This is making something complex where complexity is not needed to find that patterns would in fact emerge....1d cellular automata does these exact patterns all the time, the only difference to this complex system is the choice in the neighbors. If you randomly pick neighbors and don't change them afterward, then all you've done is re-arrange the 1d lattice....which you can then just sort to get back to a proper 1d CA.
    This isn't special, sorry.

  • @CottonInDerTube
    @CottonInDerTube 4 роки тому

    And you use that for ... ?

  • @zhen3356
    @zhen3356 4 роки тому

    is there a git for the program generating the random sequence?

  • @tuhinmukherjee8141
    @tuhinmukherjee8141 3 роки тому

    Haha, who'd expect a repeating pattern in a stochastic network!

  • @atrumluminarium
    @atrumluminarium 4 роки тому

    This is a generalisation of GoL. The difference is that GoL needs a specific network architecture (i.e. a lattice) and a particular set of rules which in this case are generated randomly

  • @stijnisgoed
    @stijnisgoed 4 роки тому +5

    Am I the only one who hears "booty network" every time?

    • @sasilik
      @sasilik 4 роки тому

      You are not.

  • @quaidcarlobulloch9300
    @quaidcarlobulloch9300 4 роки тому

    Like Wolframs book: a new kind of scienece

  • @klax001
    @klax001 4 роки тому

    Its Ethan Klein's lost European little brother!