Neural networks [5.2] : Restricted Boltzmann machine - inference

Поділитися
Вставка
  • Опубліковано 27 гру 2024

КОМЕНТАРІ • 47

  • @sourasisdas
    @sourasisdas 4 роки тому +4

    Thanks Hugo ! Out of many available videos on this topic, yours is the most lucid and easy to follow. Big help for me !

  • @piratepeter5788
    @piratepeter5788 2 роки тому

    Thanks a lottt Hugo! I have become a great fan of your works!

  • @ElizaberthUndEugen
    @ElizaberthUndEugen 5 років тому

    The step at 11:20 seems a little hand-wavy. I don't see how it follows that the fraction is p(h_j | x) just because fraction describes a probability distribution. How do I know it describes the distribution p(h_j | x)? You say it *must* be so. But why?

    • @hugolarochelle
      @hugolarochelle  5 років тому

      Good question! It's hard to give the derivation here, but we know that p(h_j=1|x) = sigmoid(W_{j,.} x + b_j) and that p(h_j=0|x) 1-sigmoid(W_{j,.} x + b_j). Then, if you do the exercise of calculating the expression I highlight at 11:20 for h_j = 1 and for h_j=0, you'll see that they match.
      Hope this helps!

  • @gunamrit
    @gunamrit 6 місяців тому

    Hi Hugo!
    Amazing video
    Can you please help me with the derivation of 4:42 ?? if there is a video supported or a document?
    Thanks

  • @BadriNathJK
    @BadriNathJK 7 років тому

    @16:38 denominator is bit confusing. I mean why we find neighbors of z instead of z' in the denominator factor fuction?

    • @hugolarochelle
      @hugolarochelle  7 років тому +2

      There's no "reason". This is simply a statement of what the local Markov property is. In other words, this is how it is defined.

    • @BadriNathJK
      @BadriNathJK 7 років тому

      Thank you :)

  • @jornmalich6848
    @jornmalich6848 10 років тому +2

    really nice vids! i like your slide style

  • @1982rafaellima
    @1982rafaellima 10 років тому +12

    It would be interesting if you show na execution example of the RBM in a small dataset. Anyway, thank you for the explanation. Keep up the great work! =)

  • @alexandrenanchen5250
    @alexandrenanchen5250 10 років тому

    Many thanks for the detailed explanation!

  • @muditjain7667
    @muditjain7667 7 років тому

    Can you explain @7:00 how the nested sum of hidden units happened?

    • @cakobe8
      @cakobe8 7 років тому

      I strongly recommend you check out his lectures on CRFs. But basically, you have to sum over all possible values of all of the hidden units, because there are simply those many hidden units involved.

  • @igorjouravlev2643
    @igorjouravlev2643 4 роки тому

    Very good explanation. Thanks a lot!

  • @AnsImran
    @AnsImran 9 місяців тому

    that's very very detailed.
    which book did you follow?

    • @hugolarochelle
      @hugolarochelle  9 місяців тому

      Thanks for your kind words! I didn't follow any book actually :-)

    • @AnsImran
      @AnsImran 9 місяців тому

      @@hugolarochellethanks to you man!

  • @haoli1904
    @haoli1904 8 років тому

    Hi, Could you provide the HDBRM experiment code in the paper named "Classification using DRBM"? I try to recreat experiment and get stuck in HDRBM.

  • @fengji4
    @fengji4 9 років тому +2

    thank you Hugo, it helps a lot.
    would you also do some cast in RNN?

    • @hugolarochelle
      @hugolarochelle  9 років тому

      Unfortunately no :-( Maybe I'll make some some day. In the mean time, I'd consider reading this:
      www.iro.umontreal.ca/~bengioy/dlbook/rnn.html

    • @fengji4
      @fengji4 9 років тому +1

      Hugo Larochelle thanks for the tip. I'll definitely check that out.
      I really enjoyed watching your lectures, you have this extraordinary gift of explain things clearly.
      So sad I cant speak French.

    • @hugolarochelle
      @hugolarochelle  9 років тому +2

      Ji Feng Thanks, I really appreciate your kind words :-)

    • @jorgesimao4350
      @jorgesimao4350 4 роки тому

      Link to RNN resource is down.. any other suggestion!?

  • @JS-gg4px
    @JS-gg4px 7 років тому +1

    Hi, Hugo Larochelle, thanks for your video. I am confused what is the different between the sum of the j(numerator) and the sum of the h'_j(denominator). Could you explain it?

  • @srgberni
    @srgberni Рік тому

    Is this explanation based on the assumption that both, h and x are either 1 or 0? I understand that they can´t be a discrete distribution of values between 1 and 0?

    • @hugolarochelle
      @hugolarochelle  Рік тому +1

      Good question! Yes the explanation is specific to the case where the values of x and h are 0 or 1. But it would be possible to derive a version where x and h takes any continuous value between 0 and 1 (the derivation is just a bit more complicated, requiring integrals).
      Hope this helps!

    • @srgberni
      @srgberni Рік тому

      @@hugolarochelle thanks heaps for answering, and so quickly!

  • @IlSharkonIl
    @IlSharkonIl 8 років тому +1

    Hey,
    could you upload the presentations?

    • @hugolarochelle
      @hugolarochelle  8 років тому +4

      Sure! Everything is here: info.usherbrooke.ca/hlarochelle/neural_networks/content.html

    • @IlSharkonIl
      @IlSharkonIl 8 років тому

      Hugo Larochelle
      Thank you !

    • @gilsinialopez1196
      @gilsinialopez1196 8 років тому

      Hugo,
      Can you also share the assignments/exams associated with the course ? It would help me calibrate how much of the material I have correctly assimilated.

    • @hugolarochelle
      @hugolarochelle  8 років тому +3

      you'll find 3 assignments here: info.usherbrooke.ca/hlarochelle/neural_networks/evaluations.html

    • @gilsinialopez1196
      @gilsinialopez1196 8 років тому

      thank you !

  • @ledilnudil4256
    @ledilnudil4256 9 років тому

    Thank you for the video it is very helpful!

  • @pjsudharshan
    @pjsudharshan 8 років тому

    Hello, can you pls explain how the hidden layer is updated as 0 or 1 after obtaining the probability (operating with the activation function) ?

    • @hugolarochelle
      @hugolarochelle  8 років тому +6

      Sure! Once you've computed the value of the sigmoid (let's call that value p), you sample the value of the corresponding unit by sampling a real number between 0 and 1 from a uniform distribution, and if that number is smaller than p, then you set the unit to 1. Otherwise, you set it to 0.
      Hope this helps!

  • @SavenkovD
    @SavenkovD 7 років тому

    @6.44 at the first line the denominator should probably be sum(p(x|h')), not sum(p(x, h')).

    • @hugolarochelle
      @hugolarochelle  7 років тому

      Nope, it's indeed \sum p(x,h'). That is because we have p(h|x) = p(x,h) /p(x), and p(x) = \sum_{h'} p(x,h').

  • @saatchibhalla
    @saatchibhalla 6 років тому +1

    OMG THANK YOU!!!!!

  • @chengxin8850
    @chengxin8850 10 років тому

    cool!

  • @EmanueleDiSaverio
    @EmanueleDiSaverio 7 років тому +1

    45 minutes of match and proof, no exercise, no code so far.
    Not saying I could do better, but maybe someone could.

    • @abcdxx1059
      @abcdxx1059 6 років тому

      You should understand this don't think any language could hold on in the future if you know this you won't have to worry in the future

    • @martink7609
      @martink7609 6 років тому +1

      You can skip these lectures if you know this material already. Otherwise, you cannot code anything on your own. You can always look for implementations by others though, but most probably you won't get a deep understanding of the subject that way.