Supremum of a set

Поділитися
Вставка
  • Опубліковано 23 гру 2024

КОМЕНТАРІ • 80

  • @pedropeixoto8176
    @pedropeixoto8176 Місяць тому

    Your definition is clearer than how most real analysis books put it. Not that I have read more than a few books on the subject, ..., but still.

  • @jupitersolarsystem1014
    @jupitersolarsystem1014 3 роки тому +1

    Thank you for the clear explanation. I am a self-learner so this lectures help a lot when I do not understand a concept from textbooks.

  • @CliffStamp
    @CliffStamp 4 роки тому +1

    That is an elegant way to define something like a general maximum for a set.

  • @justpassingby6090
    @justpassingby6090 3 роки тому +3

    I have a question sir : In this video you stated if M1 < 4 and S1 > M1 then 4 has to be a sup. Doesn't that mean 5 is also a sup(least upper bound) in that definition?
    Thanks in advance.

    • @drpeyam
      @drpeyam  3 роки тому +2

      5 is an upper bound but not the least upper bound, since 4 is smaller

    • @justpassingby6090
      @justpassingby6090 3 роки тому

      @@drpeyam , thanks for the clarification sir.I really love your videos!

  • @bertrandspuzzle
    @bertrandspuzzle 4 роки тому +5

    Where we're going, we won't need bounds.

  • @valelopez5931
    @valelopez5931 3 роки тому

    please don't change. love this content

  • @LucaIlarioCarbonini
    @LucaIlarioCarbonini 4 роки тому +1

    Definetively something I was looking for! Thanks!

  • @Kdd160
    @Kdd160 4 роки тому +5

    1:32
    "SOUP"??
    IN THE SUBTITLES LOLLLL

  • @IoT_
    @IoT_ 4 роки тому +1

    I was wondering : does it work for field of the rational numbers? We could divide at half the interval infinitely many times as well but I have a feeling that it can messed up because Rationals are countable.

    • @drpeyam
      @drpeyam  4 роки тому

      Well you could define it the same way as for the reals, but it wouldn’t exist

    • @IoT_
      @IoT_ 4 роки тому

      @@drpeyam so for the interval (-inf;4) € Q there is no supremum?

    • @drpeyam
      @drpeyam  4 роки тому +1

      Well in this case the sup is 4. But if you take the set of rational numbers r such that r^2 < 2, then the sup doesn’t exist (in Q)

    • @IoT_
      @IoT_ 4 роки тому

      @@drpeyam this is very obvious for sure, sqrt(2) is not rational) I was talking about the interval from the video

    • @foreachepsilon
      @foreachepsilon 4 роки тому

      Eg. M the supremum is 4. 4 is in Q.

  • @moshadj
    @moshadj 4 роки тому +1

    This works for any ordered set as well. But not all ordered sets have the Least Upper Bound property (the property that a bounded, non-empty set has a supremum in the containing ordered set). Consider the following subset of the rationals, the rationals who's square is lesser equal to 2. Clearly from high school math we know the sup of this set would be sqrt(2), but also from that same math class we know sqrt(2) is irrational and in particular there is no sup in the rationals even though the set is clearly non-empty and bounded.

    • @moshadj
      @moshadj 4 роки тому

      In fact one "definition" for the real field is the "smallest" ordered field containing the rationals that has the LUB property.

  • @xavierplatiau4635
    @xavierplatiau4635 4 роки тому +2

    1:00 You were right to say « non empty bounded subset of R »
    For exemple R which is not bounded has no sup.
    So I wonder, will you be talking about the extended real line in which every subset has an inf and a sup one day? That would be amazing !

    • @pichass9337
      @pichass9337 4 роки тому

      Are you talking about the projective line?

    • @xavierplatiau4635
      @xavierplatiau4635 4 роки тому

      I’m talking about that :
      en.m.wikipedia.org/wiki/Extended_real_number_line
      I’m French, we call it « R barre », no idea how it’s commonly called in English !

    • @drpeyam
      @drpeyam  4 роки тому +2

      Yeah, I will actually!

  • @SartajKhan-jg3nz
    @SartajKhan-jg3nz 4 роки тому

    Say we have a set S, and X is less or equal to the Sup(S). If we can show that, if Y is an element of S greater than X, X=Y then does that imply X=Y=sup(S)?

    • @IoT_
      @IoT_ 4 роки тому

      If you say that Y is strictly greater than X ,it means that X cannot be sup(S) and it means that X is NOT less or equal but just less than sup(S).

    • @xavierplatiau4635
      @xavierplatiau4635 4 роки тому +1

      Ok let’s start :
      Let S be a non empty bounded subset of R.
      Let x be in S such that for all y, x== sup(S) to prove x=sup(S)
      Let y be in S, either y =< x or x =< y and x=y and so y =< x
      So x is an upper bound of S and so sup(S) =< x as sup(S) is the min of the upper bound.
      So x = sup(S)

    • @IoT_
      @IoT_ 4 роки тому

      @@xavierplatiau4635 It's true but the comment was about that y just greater than x, not great or equal)

    • @SartajKhan-jg3nz
      @SartajKhan-jg3nz 4 роки тому

      @@xavierplatiau4635 Thanksss got it

  • @raydencreed1524
    @raydencreed1524 2 роки тому

    If, for a given set, we define a new set of upper bounds, could we define the supremum as the minimum of that set instead?

    • @drpeyam
      @drpeyam  2 роки тому +1

      Yes because it’s always attained. That’s a really nice observation

  • @tomkerruish2982
    @tomkerruish2982 4 роки тому

    How do you intend to prove this as a theorem? Are you going to construct the reals as Dedekind cuts or Cauchy sequences of the rationals, or perhaps in some other fashion?

  • @jacobgoldman5780
    @jacobgoldman5780 4 роки тому

    Is there a sup for lower bounds?

    • @leo8879
      @leo8879 4 роки тому +1

      Yes, for a set bounded below there is the infinum, which the largest lower bound. (If you think of the supremum as the smallest upper bound)

    • @drpeyam
      @drpeyam  4 роки тому

      Yep, the inf (next video)

  • @omaymaouhadi9315
    @omaymaouhadi9315 3 роки тому

    Thaaanks a lot this is such as a great explication!!!

  • @joefuentes2977
    @joefuentes2977 3 роки тому

    Why isnt supremeum defined like for all elements x in S then x

    • @drpeyam
      @drpeyam  3 роки тому

      Because then there are many M that satisfy this if x

    • @drpeyam
      @drpeyam  3 роки тому

      Sup is the least upper bound, the smallest one of all the M

    • @joefuentes2977
      @joefuentes2977 3 роки тому

      😄 thanks! That makes sense!

  • @GabrielRamirez-sd9fz
    @GabrielRamirez-sd9fz 4 роки тому +1

    Dr.Peyam could you explain some theory of Gauss Eliminitation please. From Perú 😃

    • @drpeyam
      @drpeyam  4 роки тому +1

      ua-cam.com/play/PLJb1qAQIrmmDBodVKfa0qmXmZwvzN4hx7.html

    • @GabrielRamirez-sd9fz
      @GabrielRamirez-sd9fz 4 роки тому

      Thanks for the video. I am huge fan of your work 💪🏽

  • @foreachepsilon
    @foreachepsilon 4 роки тому

    Why might it be reductive to say “supremum is a maximum with a built-in limit”?

    • @drpeyam
      @drpeyam  4 роки тому +2

      Well, you need supremum to define limits, so it’s a bit circular

  • @muyangyan
    @muyangyan 3 роки тому

    This was made on my birthday lol. Thanks for the tutorial

    • @drpeyam
      @drpeyam  3 роки тому +1

      Happy birthday!!! 🎂

  • @dgrandlapinblanc
    @dgrandlapinblanc 2 роки тому

    Ok. Thank you very much.

  • @sanderneckebroeck843
    @sanderneckebroeck843 4 роки тому

    Best joke I heard for supremum... Will do it on the exam! :)

  • @Na-eo1gx
    @Na-eo1gx 4 роки тому

    this was extremely helpful, thanks!

  • @sanelprtenjaca9776
    @sanelprtenjaca9776 4 роки тому

    Let S = [3, 4). Pick 3.9: there is always bigger number then 3.9: 3.99 < 3.999 < ... Pick any number a in S, there is always b in S such that b > a (for example b = (a + 4)/2). And sup(S) = 4? If yes, then this definiton is obvious to me :)

    • @Kdd160
      @Kdd160 4 роки тому +3

      Actually in my opinion we should write it to be
      LIM as x->inf of 4-(1/x)
      (JUST KIDDING BRO, RELAX :)))))

    • @drpeyam
      @drpeyam  4 роки тому +1

      Yes, sup(S) = 4

    • @deera_phina
      @deera_phina 2 роки тому

      @@drpeyam Are we simply saying that the supremum is the largest number in the set?

  • @imansaid2321
    @imansaid2321 3 роки тому

    The wtf part killed me

  • @laviekolchinsky9441
    @laviekolchinsky9441 4 роки тому

    Could you still say the maximum is 4-epsilon?

    • @laviekolchinsky9441
      @laviekolchinsky9441 4 роки тому

      (minus)

    • @rabindranathghosh31
      @rabindranathghosh31 4 роки тому

      @@laviekolchinsky9441 the maximum could be defined as the limit as epsilon goes to zero of 4-epsilon. But here epsilon is a variable but maximum is a constant. I think that's the issue here.

    • @beatoriche7301
      @beatoriche7301 4 роки тому +1

      Not really - I get the intuition of wanting to grasp this open interval as ending infinitesimally close to its endpoint, but the concept of an open interval really refers to all real numbers strictly between the two endpoints (without the endpoints themselves). Even if you introduce infinitesimals (which do not exist in the standard real numbers) via the hyperreals, subtracting an infinitesimal _dx_ from _4_ would make the number smaller than just a regular _4_ - so _4 - dx_ would, by definition, have to be in the interval. But you could do the same thing with _4 - dx/2,_ _4 - dx/3,_ and so on and so forth precisely because every hyperreal number has infinitely many hyperreal numbers infinitesimally close to it. In other words, the maximum of this set cannot exist - even if you allow the use of infinitesimals.

    • @Kdd160
      @Kdd160 4 роки тому

      We can write it to be
      LIM as x->0 of 4-x
      (RELAX, JUST KIDDING :} )

  • @zjc7353
    @zjc7353 4 роки тому +2

    I love this titleXD

  • @something2doTV
    @something2doTV 4 роки тому

    Thanks, really helped :)

  • @bjarnivalur6330
    @bjarnivalur6330 4 роки тому +4

    Not much, how 'bout you?
    ...
    ok, now to watching the video.

  • @kartikraturi9888
    @kartikraturi9888 4 роки тому

    Wass sup my dawg

  • @sonusaini-nm9xc
    @sonusaini-nm9xc 4 роки тому

    Nice

  • @rogerkearns8094
    @rogerkearns8094 4 роки тому

    Wasn't Bugs Bunny always asking you about that, Doc?

  • @ajiwibowo8736
    @ajiwibowo8736 4 роки тому

    Sup bro! How r u?

  • @janouglaeser8049
    @janouglaeser8049 4 роки тому

    Dr. Peyam, I sent you an email on April 20 (the subject was: "[Proof!] All solutions for f'=ffffffffffff").
    I would greatly appreciate if you could take a look. Sorry if I'm being annoying.

  • @propleyer2867
    @propleyer2867 3 роки тому

    ahaaa I am bigger than you hhhhhhh . thanks sir for this clear explanation

  • @sugarfrosted2005
    @sugarfrosted2005 4 роки тому

    ClUB results in puns though.

  • @TheMazyProduction
    @TheMazyProduction 4 роки тому

    Not much, how are you?

  • @DanieleCapellini
    @DanieleCapellini 4 роки тому +1

    not much, hbu?

  • @adfr1806
    @adfr1806 4 роки тому

    Ez

  • @ChienChiWang
    @ChienChiWang 3 роки тому

    want to find as WTF 😂

  • @jacobgoldman5780
    @jacobgoldman5780 4 роки тому +1

    I don't think you know what WTF means Peyam

    • @Kdd160
      @Kdd160 4 роки тому

      Everyone knows; he used that in one of the videos in which he calculated
      the sum of 1/(x^2+1)

    • @drpeyam
      @drpeyam  4 роки тому

      Want to find, what else could it possibly mean? 😝

    • @iabervon
      @iabervon 4 роки тому

      @@drpeyam Well, if someone gives you a weird expression and asks you for a limit, you say "WTF?" You need to know the domain, so your first thought should be "What's The Function?" (according to 3blue1brown)

    • @shayanmoosavi9139
      @shayanmoosavi9139 4 роки тому

      @@drpeyam it could also mean "what's the force?" according to nick lucid :))
      (I hope you've heard of him. He's awesome.)