Lecture 6 - Support Vector Machines | Stanford CS229: Machine Learning Andrew Ng (Autumn 2018)

Поділитися
Вставка
  • Опубліковано 17 гру 2024

КОМЕНТАРІ • 44

  • @a7744hsc
    @a7744hsc 2 роки тому +233

    SVM starts from 46:20

  • @coragon42
    @coragon42 2 роки тому +24

    32:07
    It helps me to think of Laplace smoothing as
    Pr(observation gets label) = (count of observations with label)/(number of observations) -->
    Pr(observation gets label) = (count of observations with label + 1)/(number of observations + number of possible labels)

  • @japanbeyond
    @japanbeyond 2 роки тому +2

    26:30 memo. he explains the difference between the multinomial event and the multivariate Bernoulli event model.

  • @MrSteveban
    @MrSteveban Рік тому +4

    In 19:15 wouldn't it be more accurate to say multinouli instead of multinomial, since the concept of number of trials that's a parameter of the multinomial distribution doesn't really apply here?

  • @deniskim3456
    @deniskim3456 2 роки тому +52

    Don't buy drugs, guys.

    • @realize2424
      @realize2424 2 роки тому +11

      I did drugs so I could become a machine learner!

    • @The_Quaalude
      @The_Quaalude 11 місяців тому +1

      A lot of software engineers take Adderall and micro doses of molly, shrooms, and acid 😂

    • @floribertjackalope2606
      @floribertjackalope2606 7 місяців тому

      too late

  • @cam9751
    @cam9751 3 місяці тому +3

    Even Jabba the Hutt was interested in and asked a question

  • @kevinshao9148
    @kevinshao9148 Рік тому +2

    Thanks for the great video! One question: 8:00, if you have this NIPS in your feature, were you even able to train your model if you don't have any email contains NIPS? Your MLE formula will yield 0 probability. (Or actually you not really train your model, you got analytic solution directly, and prediction just use the counting solution?) Thanks in advance for any advice!

    • @littleKingSolomon
      @littleKingSolomon 9 місяців тому

      We estimate the parameters in the analytical solutions using MLE. If NIPS didn't occur, we can resolve the problem of zero division with Laplace smoothing.
      Or perhaps u mean NIPs not in your training dictionary. In which case a sentinel value it used to represent all other values not present in training data

  • @abhigyanganguly1988
    @abhigyanganguly1988 2 роки тому +3

    just had a doubt....... at 54:56 , what does g(z) denote ? is it the sigmoid function ?

    • @vigneshreddy6121
      @vigneshreddy6121 2 роки тому

      Yes, for sigmoid function, when theta transpose x > 0, the sigmoid will be > 0.5

  • @creativeuser9086
    @creativeuser9086 Рік тому +19

    too many side quests in this level

  • @appu6517
    @appu6517 16 днів тому

    nice and helpful. but initially i got little confused between geometrical and funcitonal margin that why are we defining two terms for just normalizing.

  • @clip1766
    @clip1766 Місяць тому +4

    SVM from 46th min

  • @jaskaransingh3200
    @jaskaransingh3200 2 роки тому +1

    A doubt : When talking about NIPS conference making zero probability in Naive Bayes ; in the first place, probability of word NIPS shouldn't come up in the calculation P(x /y=0) , as the the binary column vector of 10000 elements won't have this word in it as its not in the top 10000 words cuz it started appearing very recently.

    • @traveldiaryinc
      @traveldiaryinc Рік тому +1

      I think he said a dictionary with 10k words where Nips is a he 6017th word, dictionary doesn't contain top 10k words

    • @jayanjans
      @jayanjans Рік тому

      NIPS is the 6017 word in 10000 words dictionary but as the word doesn't appear in the mails that is received in the beginning the MLE is a product so it would tend to be zero, now when the word started appearing in the mail the detection by the model would be still zero as the product in the MLE is already at zero

  • @microwavecoffee
    @microwavecoffee Рік тому +17

    They lost 😭

    • @karanbania2785
      @karanbania2785 Рік тому +2

      The exact thing I was wondering

    • @HyeonGon90
      @HyeonGon90 9 місяців тому +3

      so it doesn't need to do Laplace smoothing

  • @bakashisenseiAnimeIsLove
    @bakashisenseiAnimeIsLove 2 роки тому +1

    at 35:21 shouldnt there be ni in general instead of the 10000 that is being added

    • @timgoppelsroeder121
      @timgoppelsroeder121 Рік тому +3

      No n_i is the number of words in the i'th email but the term we add to the bottom in laplace smoothing is the number of possible labels which in andrews example is the dictionary size=10'000

    • @timgoppelsroeder121
      @timgoppelsroeder121 Рік тому

      I was wondering the same thing for a second

  • @fahyen6557
    @fahyen6557 Рік тому +2

    1/4 done!😵

  • @vemulasuman6995
    @vemulasuman6995 5 місяців тому

    where can I find class notes for this lecture? please any one know this

    • @liaroy7346
      @liaroy7346 2 місяці тому

      cs229.stanford.edu/lectures-spring2022/main_notes.pdf

  • @haoranlee8649
    @haoranlee8649 Рік тому +1

    laplace smoothy

  • @gnuhnhula
    @gnuhnhula Рік тому +1

    Done!

  • @marciamarquene5753
    @marciamarquene5753 Рік тому +1

    G a gente se vê se fala ET r viu o cafezinho tava no forno

  • @marciamarquene5753
    @marciamarquene5753 Рік тому

    T amo demais essa noite foi tão rápido mas se Deus quiser vir buscar f xi tô falando w se quiser ir comigo te amo e fica tranquilo então obrigada pelo convite lá pegar o valor é é é só o mesmo do trabalho e depois do jogo e do trabalho é melhor hoje

  • @jaivratsingh9966
    @jaivratsingh9966 9 місяців тому +4

    camera person - please do not move it frequently next time. It should focus on what is written on board. You are tracing professor and losing content. We can relate voice to what is written on board. It should always be on vision what he talking. Your and his hard work got wasted a bit.

  • @marciamarquene5753
    @marciamarquene5753 Рік тому

    C BB GG GG GG GG e GG e GG GG GG GG e o e um pouco então né eu tenho e um beijo e o cafezinho e o carro de manhã r ER r viu o jogo é só no é só no é o nome de quem é

  • @maar2001
    @maar2001 Рік тому +2

    He needs to learn how to speak loud and more clearly... Otherwise it's a good lecture 👍🏾

    • @LoneWolfDion
      @LoneWolfDion 6 місяців тому +1

      Turn up your head phones. I listen on 2x speed and can understand him. When I went to normal speed I understood less.

    • @survivinglife262
      @survivinglife262 2 місяці тому

      his vocal/volume is more than enough for me at laptop volume 35-40. maybe its your phone/device at fault.