Rayleigh Ritz Method, Working Rule & Example

Поділитися
Вставка
  • Опубліковано 30 жов 2024

КОМЕНТАРІ • 39

  • @ridhimachauhan4962
    @ridhimachauhan4962 Рік тому

    Great explanation 👌
    Thank you so much sir

    • @mathe_ma
      @mathe_ma  Рік тому

      Most welcome ✨ keep Learning ✨

  • @kashafabbaxi7753
    @kashafabbaxi7753 Рік тому

    Brilliant teacher and fantastic explanation super easy and calm .❤❤❤

    • @mathe_ma
      @mathe_ma  Рік тому

      Learners like you are the true motivation 🔥🔥keep learning❤️

  • @IMON5570
    @IMON5570 Рік тому

    C1=-1/2. Really nice sir

    • @mathe_ma
      @mathe_ma  Рік тому

      Thank you so much dear learner... Keep learning & keep sharing my content to the needy ones.

  • @abarnasundar1286
    @abarnasundar1286 2 роки тому

    Thankyou sir

    • @mathe_ma
      @mathe_ma  2 роки тому

      Glad it help.. keep learning

  • @piyushmechanical9461
    @piyushmechanical9461 Рік тому

    Thankyou sir🙏,it is very helpful to me and my batchmates❣️

    • @mathe_ma
      @mathe_ma  Рік тому

      Glad to hear that❤️

  • @mahalakshmin2394
    @mahalakshmin2394 3 роки тому

    Thanks for the great explanation, sir.

    • @mathe_ma
      @mathe_ma  3 роки тому

      Welcome.. keep learning 😇

  • @yagyaduttsharma9985
    @yagyaduttsharma9985 2 роки тому

    Thank you!

    • @mathe_ma
      @mathe_ma  2 роки тому

      Glad.. it help! Keep learning

  • @pavankarthik9488
    @pavankarthik9488 3 роки тому

    Hello Sir ! great explanation..learnt this module from u

    • @mathe_ma
      @mathe_ma  3 роки тому

      Thank you Pavan.. keep learning 😇

  • @prabhalamvamsikrishnam21me60
    @prabhalamvamsikrishnam21me60 2 роки тому

    sir,
    I have a doubt from your explanation. as you said that the interpolation function, y = sigma (from i = 1 to n)(ci * phi(i)), then how can we take y = (c0 + c1x) as an interpolation function in the example that you have solved? as sigma is from 1 to n i think the interpolation function should be y = (c1x + c2x^2). kindly clarify my doubt.
    Sir, you have given a simple solution to convert a differential equation to variational form (i.e., the functional "I"). I have tried it to apply the same on the applications of FEM such as heat transfer through 1-d element but i am not getting the variational form exactly. Is there any other method? kindly suggest us.
    Thank you

    • @mathe_ma
      @mathe_ma  2 роки тому

      I appreciate your learning skill, interpolation function should have summation from i=0 to n.
      Answer to your 2nd doubt is:
      Other than this method I didn't use..

  • @vijaysinghchauhan7079
    @vijaysinghchauhan7079 5 місяців тому

    at 22:23 the required solution does not satisfy the given differential equation, why?

    • @mathe_ma
      @mathe_ma  5 місяців тому +1

      Try one more time

  • @amitmandal2110
    @amitmandal2110 3 роки тому

    Hello brother, please tell the book name 🙏

  • @syedaalishwazanib9581
    @syedaalishwazanib9581 3 роки тому +1

    How to solve same method for non linear equation

    • @mathe_ma
      @mathe_ma  2 роки тому

      I have to see to it.

  • @girishsharma6898
    @girishsharma6898 2 роки тому

    Could you please give the reference book for the same

  • @vijaysinghchauhan7079
    @vijaysinghchauhan7079 6 місяців тому

    at 10:20 how do we write it?

    • @mathe_ma
      @mathe_ma  6 місяців тому

      Good question Vijay... We are assuming y= C⁰+C1x+C2x² as in the given problem we have 2nd order Differential equation.

  • @civilpaiyan6259
    @civilpaiyan6259 Рік тому

    sir i have one question how to solve the problem if a(x) gets zero

    • @mathe_ma
      @mathe_ma  Рік тому

      If a(x) = 0 then it's reduces to first order differential equation which can be solved easily. For Rayleigh Ritz method , we need 2nd order differential equation.

  • @adarshsaaho8186
    @adarshsaaho8186 3 роки тому

    Aap konsa book se padhte ho sir
    Kya book ka naame bol sakte ho please

    • @mathe_ma
      @mathe_ma  2 роки тому

      Any book you can refer which has this tooic.

  • @mahnoorsanaullahph-0430
    @mahnoorsanaullahph-0430 2 роки тому

    Sir plz send just answer of practice question

  • @sarthakrathor1416
    @sarthakrathor1416 Рік тому

    Please provide the solution of practice problem
    I got answer Y=0

    • @mathe_ma
      @mathe_ma  Рік тому

      Answer is: y = 0.5 x (x-1)

    • @mathe_ma
      @mathe_ma  Рік тому

      Apply exactly the same procedure to get answer. Try one more time if still you are not getting then mail me at atishgour1990@gmail.com

  • @er.amitsingh3567
    @er.amitsingh3567 2 роки тому

    using galerkin's method ,solve the boundary value problem y''=3 xx+4y;y(0),y(1)=1.
    Plz sir solve the problem

    • @er.amitsingh3567
      @er.amitsingh3567 2 роки тому +1

      y"=3x+4y ; y(0)=0,y(1)=1 using the Glaeekin's method.

    • @mathe_ma
      @mathe_ma  5 місяців тому

      You should try solving problems in order to enhance your problem solving skills.

  • @harithasivamayam7199
    @harithasivamayam7199 3 роки тому

    Thankyou sir

    • @mathe_ma
      @mathe_ma  3 роки тому

      God bless.. keep learning 😇