Topological Spaces Part 1

Поділитися
Вставка
  • Опубліковано 18 гру 2024

КОМЕНТАРІ • 59

  • @categorille8330
    @categorille8330 5 років тому +14

    you are the greatest teacher ever at linking intuition with rigorous definitions. I can truly see WHY people defined a concept in a certain way. That is very good because it is the most lacking part of the book Topology Without Tears!

  • @efraimyawitz3332
    @efraimyawitz3332 2 роки тому +2

    I just started on this, but I have to agree with other commenters that this lecturer breaks the taboo that so many books on math seem to have on asking "Why are we doing this?", the question that is the key to all motivation. Thanks!!

  • @jiongwang7645
    @jiongwang7645 2 місяці тому

    you deserve a prize for explaining this!

  • @AkamiChannel
    @AkamiChannel 2 роки тому +2

    I finally understand what a topological space is! Thank you so much!

  • @Foxofficial254
    @Foxofficial254 9 місяців тому

    Indeed a good teacher this will help me alot in my examination come April

  • @RonLWilson
    @RonLWilson 2 роки тому +1

    This is really a great explanation, one of the best I have seen!

  • @factnewschannel1245
    @factnewschannel1245 6 років тому +8

    great,may allah give u alot of happines for this good act and try to creat a helpful idea& emotoin

  • @koutoumukei
    @koutoumukei 5 років тому +1

    This is helping me understand the axioms I found in a Japanese textbook that does not explain the motivations behind them. Thank you.

  • @omidheidari6711
    @omidheidari6711 4 роки тому +1

    Awesome explanation

  • @mathamateur7033
    @mathamateur7033 2 роки тому

    Thanks a ton, for being so patient and intuitive 🙏

  • @ninosawbrzostowiecki1892
    @ninosawbrzostowiecki1892 9 років тому +4

    Awesome! Thanks for posting this! I need to prepare for next semester as I heard topology is the hardest undergraduate class in maths.

  • @Micster1313
    @Micster1313 9 років тому +4

    This video is awesome! The excitement you have while explaining the stuff really inspires me. I know I will not need this stuff for the rest of my life, but you are triggering some kind of intereset in this topic. Thanks to people like you, students can understand such abstract math!

  • @eugenetettey6653
    @eugenetettey6653 5 років тому

    enjoyed the topic.. thanks

  • @jamiepayton1574
    @jamiepayton1574 4 роки тому +2

    Any reason you haven't created a playlist for these topology videos? Just so its easier to fond which one comes next.

  • @lutongyu3790
    @lutongyu3790 3 роки тому

    Very very specific and easy to understand! A little bit verbose, but it does not matter.

  • @zwitter689
    @zwitter689 8 років тому

    I like your style of presentation, this is quite good.

  • @sihfbaozgfengieg
    @sihfbaozgfengieg 2 роки тому

    i can tell you that there is a specific use of topology. it's the reason i come here and it WILL be practically useful for my career. it's used in robot motion planning to understand and represent configuration space. thank you sir for this extremely clear video.

  • @kiwanoish
    @kiwanoish 8 років тому +3

    I really enjoyed your playlist on group theory so this is very welcomed. However, I cannot find any playlist of yours named Topology. What videos are supposed to be included in the playlist that you are referring to in this video?

  • @RADAMAHER
    @RADAMAHER 2 роки тому

    U_2.1, U_pi on 27:19 it is just some kind of "names" of U?

    • @haidongma
      @haidongma 6 місяців тому

      maybe with Integral

  • @IdreesIMala
    @IdreesIMala 5 років тому

    دەست خوش

  • @jackcicero6746
    @jackcicero6746 7 років тому

    thank you for a class video

  • @natashadcosta7912
    @natashadcosta7912 2 роки тому

    this is gold.

  • @user-en8wj6vb7z
    @user-en8wj6vb7z 3 роки тому

    good!

  • @fungames598
    @fungames598 8 років тому +12

    Great Work.. may ALLAH give u alot of happiness for this effort

  • @websurfer352
    @websurfer352 Рік тому

    Is a topological space necessarily unbounded by definition??

  • @jacobvandijk6525
    @jacobvandijk6525 5 років тому +2

    @ 19:00: The symbol for an empty set has nothing to do with the Greek letter phi !

    • @bjoernogthomas
      @bjoernogthomas 5 років тому +2

      Jacob van Dijk Noticed too. It’s the capital of the danish letter ‘Ø’

    • @jacobvandijk6525
      @jacobvandijk6525 5 років тому +5

      @@bjoernogthomas Okay, I didn't know that. With an empty set in your name you surely must know what you're talking about :-) Wikipedia is confirming it. Thanks!

    • @Salmanul_
      @Salmanul_ 4 роки тому +1

      Empty sets can be represented by phi

  • @MrYuiagaraki18
    @MrYuiagaraki18 9 років тому +1

    Tks for your videos so much! The best explanation about topological space I've ever heard. This motivates me. I'm studying about measure theory and I don't know intuitive interplay between topology and measure theory. What is the role of topology in measure theory?

  • @chakreshsingh
    @chakreshsingh 7 років тому +2

    Thanks a lot. Can you suggest some good books on Topology?

    • @artgibbs9232
      @artgibbs9232 4 роки тому

      www.thriftbooks.com/w/topology-of-3-manifolds-and-related-topics_daniel-silver/1902797/item/35494619/?mkwid=%7cdc&pcrid=448963509244&pkw=&pmt=&slid=&plc=&pgrid=104673973815&ptaid=pla-926982115650&gclid=EAIaIQobChMIyODj-6KA7AIVPB-tBh2z_gZkEAQYAiABEgJp1vD_BwE#isbn=0486435873&idiq=35494619

  • @FaizAlhamadany
    @FaizAlhamadany 9 років тому +1

    great work
    i need to textbook

  • @AviTzi1
    @AviTzi1 4 роки тому +1

    Do you follow a textbook with this series?

  • @monoman4083
    @monoman4083 7 років тому +1

    Understood so far..

  • @callmedeno
    @callmedeno 4 роки тому +1

    damn you're good

  • @seriousmax
    @seriousmax 8 років тому

    Around 23-24 minute. If we intersect two subsets, and we get an empty subset, does this satisfy the intersection condition for topology? Are these two subsets then in the topology?

    • @nainwalgaurav
      @nainwalgaurav 7 років тому +1

      I think you've got the if and then mixed up. If two subsets are in tau then their intersection is also in tau. If their intersection is empty then the empty set is already there in tau, so the only real thing to look for is every non-empty intersection must be in tau. What you are doing is reversing the if and then- "if the intersection of two subsets is in tau then both the subsets are in tau"- which is not what the axiom says. I hope I've made myself clear.

  • @ganeshsharma4397
    @ganeshsharma4397 4 роки тому

    what does U_2.1 means?

  • @vighneshpanchal1722
    @vighneshpanchal1722 7 років тому

    thnks alot sir

  • @ramansb8924
    @ramansb8924 2 роки тому

    I can't understand why is topology being defined by those 3 rules? And how those rules works?

  • @mrigank8822
    @mrigank8822 7 років тому +4

    English accent has it's benifits

    • @BihagDave
      @BihagDave 6 років тому

      Mrigank for sure.

  • @alijoueizadeh8477
    @alijoueizadeh8477 7 років тому

    Thank you.

  • @robertkrohn9385
    @robertkrohn9385 4 роки тому +1

    Hurt my feelings calling the empty set stupid lol

  • @quanjano382
    @quanjano382 4 роки тому +8

    try taking a shot everytime he says set

  • @joshuaokoro2781
    @joshuaokoro2781 3 роки тому

    It is not thta pure mathematicians insist that empty set and the whole set need to be in the topological space, it because of the unions and intersections. I hope you understand.

  • @mrigank8822
    @mrigank8822 7 років тому +1

    You should get paid for this

  • @aleenachuhanaleenachuhan2208
    @aleenachuhanaleenachuhan2208 4 роки тому

    is it possible ??Toplogy define on empty set?

  • @whatno5090
    @whatno5090 6 років тому

    Ok

  • @joshuaokoro2781
    @joshuaokoro2781 3 роки тому

    Why are you repeating yourself