[CSES][Dynamic Programming] Removing Digits

Поділитися
Вставка
  • Опубліковано 11 лис 2024

КОМЕНТАРІ • 16

  • @utkarshpatil3180
    @utkarshpatil3180 2 роки тому +3

    Your channel is criminally underrated bro, keep uploading such content.

  • @janplonka7143
    @janplonka7143 2 роки тому +1

    thanks for the video. i wasn't able to figure out the DP approach but I was able to code a recursive function to make it work, turned out pretty fast too. Watching now to try and understand DP.

  • @codekhongngu
    @codekhongngu 2 роки тому +4

    Thanks bro , I am from VietNam

  • @piyushsinha3756
    @piyushsinha3756 3 роки тому

    Nice Explanation DP approach is much simpler to code, however, with Queue the code will be much faster.
    int n;
    cin>>n;
    vector dp(n+1, inf);
    dp[n] = 0;
    queue q;
    q.push(n);
    while(!q.empty()){
    int cur = q.front();
    q.pop();
    int temp = cur;
    while(temp!=0){
    int val = temp%10;
    if(dp[cur-val] > 1+dp[cur]){
    q.push(cur-val);
    dp[cur-val] = 1+dp[cur];
    if(cur-val == 0){
    break;
    }
    }
    temp/=10;
    }
    }
    cout

  • @auhongan23
    @auhongan23 9 місяців тому

    Maybe using the greedy technique. public static int greedy(int n){
    int cnt = 0;
    while (n>0){
    int max = -1;
    int k = n;
    while (k>0){
    max = Math.max(max,k%10);
    k/=10;
    }
    n-=max;
    cnt++;
    }
    return cnt;
    }

  • @nvquanghuy2008
    @nvquanghuy2008 Рік тому

    From VietNam with Love

  • @tusharmishra6702
    @tusharmishra6702 3 роки тому +1

    I did this with simple brute force. Just subtract the max digit in the number from the number itself

    • @neatlystructured
      @neatlystructured  3 роки тому

      Great! But can you actually prove that it will always result in the right answer?

    • @AntrikshParmar
      @AntrikshParmar 3 роки тому +1

      @@neatlystructured
      public static void main(String[] args) {
      Scanner sc = new Scanner(System.in);
      System.out.println(deduct(sc.nextInt(), 0));
      }
      private static int deduct(int n, int depth) {
      if (n == 0) return 0;
      int temp = n;
      int maxDigit = 0;
      while (temp != 0) {
      int mod = temp % 10;
      maxDigit = Math.max(maxDigit, mod);
      temp = temp / 10;
      }
      return 1 + deduct(n - maxDigit, depth + 1);
      }
      The above code works for all the input without TLE.

    • @neatlystructured
      @neatlystructured  3 роки тому +1

      @@AntrikshParmar Great, i did not doubt that it wouldn't work, but the fact that it works is not proof that this greedy approach is sound. I wonder if one can prove that removing the maximal digit is always optimal.

  • @piyushrajput0_
    @piyushrajput0_ Рік тому

    I have used this code can anyone tell me what this is not a better approach rather than using dp
    int maxdigit(int n)
    {
    int mx=INT_MIN;
    while(n)
    {
    mx=max(mx,n%10);
    n/=10;
    }
    return mx;
    }
    int main()
    {

    #ifndef ONLINE_JUDGE
    freopen("input.txt","r",stdin);
    freopen("output.txt","w",stdout);
    #endif

    ll n;
    cin>>n;
    int cn=0;
    while(n)
    {
    int mx=maxdigit(n);
    n-=mx;
    cn+=1;
    }
    cout

  • @amanthakur4145
    @amanthakur4145 2 роки тому +1

    I thik greedy works for this case

    • @neatlystructured
      @neatlystructured  2 роки тому +1

      you are right! but if you cannot prove it and you have a dp solution at hand you should go with the dp solution!

  • @madhavgupta2002
    @madhavgupta2002 Рік тому

    #include
    using namespace std;
    map st;
    int helper(int n, int steps=0)
    {
    if(n==0)
    return steps;
    if(n>n;
    cout