Beyond the Gaussian integral

Поділитися
Вставка
  • Опубліковано 2 чер 2024
  • Learn more calculus on Brilliant: 👉brilliant.org/blackpenredpen/ (now with a 30-day free trial plus 20% off with this link!)
    Here's a challenging integral for Calculus 2 students! We will evaluate the improper integral 1-e^(-1/x^2) from 0 to infinity. This integral actually converges thanks to the "1-". This integral is closely related to the most famous integral in the world, the Gaussian integral. In fact, we can use integration by parts, u-substitution, and L'Hosptial's rule to make the connection with the Gaussian integral. This can be given to any calculus 2 or calculus 3 students if they would like to have a challenging integral. #calculus #mathforfun #blackpenredpen
    Check out the related videos:
    How Laplace solved the Gaussian integral, 👉 • how Laplace solved the...
    The original way with polar coordinate 👉 • How Gauss solved the i...
    The error function introduction 👉 • the impossible integra...
    0:00 My pick for the most famous integral in the world
    0:14 integral of 1-e^(-1/x^2) from 0 to inf
    9:17 Check out Brilliant
    🛍 Shop my math t-shirt & hoodies: amzn.to/3qBeuw6
    ----------------------------------------
    💪 Support the channel and get featured in the video description by becoming a patron: / blackpenredpen
    AP-IP Ben Delo Marcelo Silva Ehud Ezra 3blue1brown Joseph DeStefano
    Mark Mann Philippe Zivan Sussholz AlkanKondo89 Adam Quentin Colley
    Gary Tugan Stephen Stofka Alex Dodge Gary Huntress Alison Hansel
    Delton Ding Klemens Christopher Ursich buda Vincent Poirier Toma Kolev
    Tibees Bob Maxell A.B.C Cristian Navarro Jan Bormans Galios Theorist
    Robert Sundling Stuart Wurtman Nick S William O'Corrigan Ron Jensen
    Patapom Daniel Kahn Lea Denise James Steven Ridgway Jason Bucata
    Mirko Schultz xeioex Jean-Manuel Izaret Jason Clement robert huff
    Julian Moik Hiu Fung Lam Ronald Bryant Jan Řehák Robert Toltowicz
    Angel Marchev, Jr. Antonio Luiz Brandao SquadriWilliam Laderer Natasha Caron Yevonnael Andrew Angel Marchev Sam Padilla ScienceBro Ryan Bingham
    Papa Fassi Hoang Nguyen Arun Iyengar Michael Miller Sandun Panthangi
    Skorj Olafsen Riley Faison Rolf Waefler Andrew Jack Ingham P Dwag Jason Kevin Davis Franco Tejero Klasseh Khornate Richard Payne Witek Mozga Brandon Smith Jan Lukas Kiermeyer Ralph Sato Kischel Nair Carsten Milkau Keith Kevelson Christoph Hipp Witness Forest Roberts Abd-alijaleel Laraki Anthony Bruent-Bessette Samuel Gronwold Tyler Bennett christopher careta Troy R Katy Lap C Niltiac, Stealer of Souls Jon Daivd R meh Tom Noa Overloop Jude Khine R3factor. Jasmine Soni L wan na Marcelo Silva Samuel N Anthony Rogers Mark Madsen Robert Da Costa Nathan Kean Timothy Raymond Gregory Henzie Lauren Danielle Nadia Rahman Evangline McDonald Yuval Blatt Zahra Parhoun Hassan Alashoor Kaakaopuupod bbaa Joash Hall Andr3w11235 Cadentato Joe Wisniewski Eric Maximilian Mecke Jorge Casanova Alexis Villalobos Jm Law Siang Qi Tancredi Casoli Steven Sea Shanties Nick K Daniel Akheterov Roy Logan
    ----------------------------------------
    Thank you all!

КОМЕНТАРІ • 66

  • @blackpenredpen
    @blackpenredpen  7 місяців тому +6

    Learn more calculus on Brilliant: 👉brilliant.org/blackpenredpen/ (now with a 30-day free trial plus 20% off with this link!)

  • @henridelagardere264
    @henridelagardere264 7 місяців тому +81

    _Beyond the Gaussian Integral_ would make for a smashing title of a TV-series, starring BlackPenRedPen. Doubt if it would be any more intriguing than his YT videos, though.

  • @randomblueguy
    @randomblueguy 7 місяців тому +8

    I solved it using Feynman’s method, i.e. by inserting alpha into the exponent and differentiating with respect to it, then performing a simple change of variables u = 1/x. You will then get a regular gaussian, then integrate the result with the respect to alpha. The integration constant is zero since I(0) = 0.

    • @rodbhar6522
      @rodbhar6522 7 місяців тому +1

      I knew someone would try that lol

  • @michaelbaum6796
    @michaelbaum6796 7 місяців тому +10

    Great explanation as always - thanks a lot👌

  • @mm..seamount4484
    @mm..seamount4484 7 місяців тому +44

    Can you make more toughest integrals seems to know some interesting ones....😎😎🗿

    • @adilu5442
      @adilu5442 7 місяців тому +6

      Cease existing

  • @ahsgdf1
    @ahsgdf1 7 місяців тому +1

    Great!
    Here's how I did it: letting 1/x^2=t gives for the integral I = 1/2 int_0^oo t^(-3/2) (1-e^-t)dt which can easily done using integration by parts and the integral representation of the gamma function.

  • @oldbeastplayz
    @oldbeastplayz 6 місяців тому +2

    Thank you Blackpenredpen for being an integral part of my life. I am in class 9 but your videos have helped me to learn and ace differentiation and integration. HATS OFF MAN FOR SUCH A WONDERFUL EXPERIENCE.

    • @Vanessa.W
      @Vanessa.W 5 місяців тому +2

      An *integral* part of your life?

    • @mitcigamer4289
      @mitcigamer4289 3 місяці тому

      no pun intended?

  • @MartinPerez-oz1nk
    @MartinPerez-oz1nk 7 місяців тому

    THANKS PROFESOR !!!!, VERY INTERESTING !!!!!!

  • @MathsMadeSimple101
    @MathsMadeSimple101 7 місяців тому +1

    The way he holds the pen is legendary

  • @edwin_pig
    @edwin_pig 6 місяців тому +1

    8:42 finally finally finally!

  • @verz1
    @verz1 7 місяців тому

    Very nice

  • @rashel1
    @rashel1 7 місяців тому +2

    really interesting❤❤

  • @dan-us6nk
    @dan-us6nk 7 місяців тому

    Marvelous.
    It cured my tummy ache which I've had all morning!

  • @francescololiva5826
    @francescololiva5826 7 місяців тому +2

    I love calculus

  • @tanaysingh7913
    @tanaysingh7913 7 місяців тому

    Sir! Can u make a course on integration from basics to top highest level pls

  • @nicolastorres147
    @nicolastorres147 7 місяців тому

    Waiting for it...

  • @justafanofalphabetlore
    @justafanofalphabetlore 7 місяців тому +1

    I like this

  • @aleksandarcvetkovski1784
    @aleksandarcvetkovski1784 7 місяців тому

    Question: When you do integration by parts, why do you sometimes take the plus or minus integral of the last row and sometimes you don’t

  • @CarterFeldman
    @CarterFeldman 7 місяців тому

    At the very end lim x-> infinity e^(-1/x^2) should be e^0 = 1 (so 0*(1-1) also equals 0)

  • @mohamadaborokti7032
    @mohamadaborokti7032 7 місяців тому

    find integral sqrt(1+x+sqrt(1+x))dx

    • @BassemFanari
      @BassemFanari 7 місяців тому

      Here's the solution:
      ∫ √(x+√(x+1)+1) dx
      //
      // Preform a U-sub:
      // Let u = √(x+1)
      // x+1 = u²
      // x = u²-1
      // dx = 2u du
      //
      = ∫ 2u √(u²+u) du
      = ∫ (2u+1-1) √(u²+u) du
      = ∫ (2u+1)√(u²+u) du - ∫ √(u²+u) du
      = ⅔√(u²+u)³ - ∫ √(u²+u) du
      //
      // Complete the square:
      //
      = ⅔√(u²+u)³ - ∫ √((u+½)²-¼) du
      = ⅔√(u²+u)³ - ½∫ √((2u+1)²-1) du
      //
      // Perform a Hyp-sub:
      // Let cosh(θ) = 2u+1
      // sinh(θ) dθ = 2 du
      //
      = ⅔√(u²+u)³ - ¼∫ √(cosh²(θ)-1) sinh(θ) dθ
      = ⅔√(u²+u)³ - ¼∫ sinh²(θ) dθ
      //
      // This is a common integral:
      // ∫ sinh²(x) dx = ½(sinh(x)cosh(x)-x) + C
      //
      = ⅔√(u²+u)³ - ⅛(sinh(θ)cosh(θ)-θ) + C
      //
      // Back substitute to u:
      // cosh(θ) = 2u+1
      // sinh(θ) = √(cosh²(θ)-1) = √((2u+1)²-1)
      // θ = cosh⁻¹(2u+1)
      //
      = ⅔√(u²+u)³ - ⅛(2u+1)√((2u-1)²-1) + ⅛cosh⁻¹(2u+1) + C
      //
      // Expand the perfect square:
      //
      = ⅔(u²+u)√(u²+u) - ¼(2u+1)√(u²+u) + ⅛cosh⁻¹(2u+1) + C
      //
      // Factor out ⅟₁₂ √(u²+u)
      //
      = ⅟₁₂ √(u²+u) (8(u²+u) - 3(2u+1)) + ⅛cosh⁻¹(2u+1) + C
      = ⅟₁₂ √(u²+u) (8u²+2u-3) + ⅛cosh⁻¹(2u+1) + C
      //
      // Back substitute to x:
      // u = √(x+1)
      // u² = x+1
      //
      ⅟₁₂ √(x+√(x+1)+1) (8x+2√(x+1)+5) + ⅛cosh⁻¹(2√(x+1)+1) + C.

  • @derjudge23
    @derjudge23 7 місяців тому

    Is there a simpler geometric demonstration?

  • @aali-fg8mg
    @aali-fg8mg 7 місяців тому +1

    Bro speak about anything and i would listen.

  • @ranjithkumararunachalam3844
    @ranjithkumararunachalam3844 6 місяців тому

    Your are ln(legend)^legend mathematician

  • @Questiala124
    @Questiala124 7 місяців тому

    Could you differentiate the prime counting function?

    • @denizkirbiyik9221
      @denizkirbiyik9221 7 місяців тому

      It’s 0 everywhere except at prime numbers where it’s undefined

  • @justafanofalphabetlore
    @justafanofalphabetlore 7 місяців тому

    So. What if there’s a half iterate Gaussian function ?

  • @abrarjahin8848
    @abrarjahin8848 7 місяців тому +1

    Bro inventing more stuff 🗿
    Meanwhile college students students: 💀☠️

  • @user-sd6gb6mm3x
    @user-sd6gb6mm3x 7 місяців тому

    老師好,我想問羅畢達定理趨近於無限的版本要怎麼證明

  • @donwald3436
    @donwald3436 6 місяців тому

    Ah yes, the famous mathematician Carlian Friedrichian Gaussian lol.

  • @BassemFanari
    @BassemFanari 7 місяців тому

    Sir, is an “Improper Integral” the same thing as a “Nonelementary Integral”?
    Can you please do a video explaining the difference and shed some light on this topic, thanks a lot 🙏

    • @raonimesquitadossantos7175
      @raonimesquitadossantos7175 7 місяців тому +3

      I believe an integral is improper when there is infinity involved and you gotta take limits, not the value itself.

    • @andreyfom-zv3gp
      @andreyfom-zv3gp 7 місяців тому +6

      No, that's totally different notions. For checking, is it an *improper integral* or not, you need to plug in bounds of integration to the function you integrate. If you have something indefinite, such like 1/0, 0/0, or smth, this is an *improper integral* (because you need to take a limit). Also, if one or both of the bounds are infinity, this is exactly an *improper integral* (because you can't just "plug in" infinity without taking a limit).
      A *nonelementary* integral is more about indefinite integrals. That means, that the antiderivative of the integrating function cannot be "explained" in terms of numbers, variables, additions, multiplications, powers and so on. Such an antiderivative is called "nonelementary". For example, sine is an *elementary function* ('cause in complex analysis we express sine as difference of exponents). But error function isn't, so an (indefinite) integral of the function e^(x^2) is called *nonelementary* .
      Proving the integral is nonelementary is veeeeery hard to do on your own. You need to use some really massive techniques to do that. So here you need to rely on your feelings. For example, you can safely assume that e^(x^3) can't be nicely integrated so integral is *nonelementary*, because of its similarities to error function.

    • @BassemFanari
      @BassemFanari 7 місяців тому

      ​@@andreyfom-zv3gpOk, but what if you have an integral that you cannot obtain an antiderivative for, neither by regular (elementary) functions nor by special (nonelementary) functions, but you can still do a definite integration on it (on a specific region) or express its antiderivative using series (like Taylor series), what do you call this type of integral?

    • @alejandroduque772
      @alejandroduque772 7 місяців тому +1

      ​@@BassemFanari Elementary functions are those who we consider to be "simple", hence the name. Anything else that is not elementary is a non elementary function. Special functions are a "subclass" of non-elementary function which can be seen regularly in practical applications. It doesn't matter the integrand, as long as it is continuous, it will always be the case that the function has an antiderivative. Writing it down elegantly is a different story but it does exists.

    • @etacarinae0
      @etacarinae0 7 місяців тому

      An improper integral is a definite integral that involves limits, commonly involving infinity in the bounds, while a nonelementary integral is an indefinite integral that has no solution in the terms of standard mathematical function. If you want to evaluate a nonelementary definite integral, you have to use advanced techniques such as complex analysis.

  • @rodbhar6522
    @rodbhar6522 7 місяців тому

    What would Chen Lu do?

  • @_lightless
    @_lightless 7 місяців тому

    can you do something easy? like 4x+6=2

  • @gibbogle
    @gibbogle 6 місяців тому

    His name was Gauss.

  • @dakcom-mk6mp
    @dakcom-mk6mp 7 місяців тому

    cool

  • @thatomofolo452
    @thatomofolo452 7 місяців тому

    Yesss 🏋️🏋️🏋️💯💫

  • @theblainefarm3310
    @theblainefarm3310 7 місяців тому

    I solved with Feynman’s method, isn’t it.

  • @dymbae
    @dymbae 7 місяців тому

    how are you always smiling

  • @georgesanxionnat5054
    @georgesanxionnat5054 7 місяців тому

    Am I the only one using Taylor expansion instead of l'Hôpital rule ? to get limits ?

    • @raphdele8455
      @raphdele8455 7 місяців тому

      C’est juste que les ricains ils sont louches

  • @Pi-Maurya
    @Pi-Maurya 6 місяців тому

    Where's your pokeball?

  • @emontrailers
    @emontrailers 7 місяців тому

    😢

  • @AushChatterjee-pn1sk
    @AushChatterjee-pn1sk 7 місяців тому +1

    Is calculas can understand by a 7 th grader

  • @mhm6421
    @mhm6421 7 місяців тому

    hey im the 10kth viewer 🥸

  • @weeblol4050
    @weeblol4050 7 місяців тому +1

    Minus was neglected twice, I guess then minus wasn't neglected at all.