Can you Solve High School Mathematics Tournament Question ? ✍️🖋️📘💙

Поділитися
Вставка
  • Опубліковано 11 гру 2024

КОМЕНТАРІ • 7

  • @9허공
    @9허공 День тому +1

    1:38 It is more easy to use Pascal triangles.

  • @wes9627
    @wes9627 День тому +2

    Easier solution method. Substitute x=y-10 into the given equation and rearrange to (y+1)^4+(y-1)^4-706=0. Pascal's Triangle 1 4 6 4 1
    Combine terms: 2(y^4+6y^2+1)-706=0 or y^4+6y^2-352=0. Solve for y^2: y^2=(-6±38)/2=16 or -22.
    Finally, x=±4-10=-6 or -14 or x=-10±i√22

    • @superacademy247
      @superacademy247  День тому

      That's a clever and efficient approach! Thanks for sharing 💯💕😎👏Thanks for sharing your insightful solution! 🔥🥰✅💕

  • @2012tulio
    @2012tulio День тому

    X = -6 and -14 . The rest are complex numbers

  • @ПавелВотяков-ю1х

    Боже как все сложно

  • @ChavoMysterio
    @ChavoMysterio День тому +1

    (x+9)⁴+(x+11)⁴=706
    (x+10-1)⁴+(x+10+1)⁴=706
    Let y=x+10
    (y-1)⁴+(y+1)⁴=706
    y⁴-4y³+6y²-4y+1
    y⁴+4y³+6y²+4y+1
    2y⁴+12y²+2=706
    2y⁴+12y²-704=0
    y⁴+6y²-352=0
    (y²+22)(y²-16)=0
    (y²+22)(y+4)(y-4)=0
    y²+22=0
    y²=-22
    |y|=i√22
    y=±i√22
    x+10=±i√22
    x=-10±i√22 ❤❤
    y+4=0
    y=-4
    x+10=-4
    x=-14 ❤
    y-4=0
    y=4
    x+10=4
    x=-6 ❤

  • @prollysine
    @prollysine День тому

    let u=x+9 , u^4+(u+2)^4=706 , u^4+4u^3+12u^2+16u-345=0 , (u+5)(u^3-u^2+17u-69)=0 , (u-3)(u^2+2u+23)=0 , u^2+2u+23=0 ,
    1 5 1 -3 u=(-2+/-V(4-92))/2 , u=(-2+/-i*V(88))/2 ,
    -1 -5 2 -6 u= -1+i*V22 , -1-i*V22 , -5 , 3 ,
    17 85 23 -69 x=u-9 , x= -10+i*V22 , -10-i*V22 , -14 , -6 ,
    -69 -345 test x=-14 , --> 706 , x=-6 , --> 706 , x= -10+i*V22 , --> 706 , x= -10-i*V22 , --> 706 ,