line integral of a curve (KristaKingMath)

Поділитися
Вставка
  • Опубліковано 17 гру 2024

КОМЕНТАРІ • 137

  • @zae1130
    @zae1130 2 роки тому +1

    Your video just saved one of Ph.D candidates in far east. Thank you.

  • @mumijuliya
    @mumijuliya 7 років тому +15

    To be more specific these are parametric equations: x = 0+(1-0)t; y= 0+(2-0)t; z = 0+(3-0)t

  • @aymanadel3470
    @aymanadel3470 3 роки тому +1

    I wish I could see at least one of my instructors explaining like you. You are the best that I have never seen. Break a leg.

  • @TheDaaani14
    @TheDaaani14 8 років тому +3

    You are by far one of the best instructors of calculus online! Such clear explanations of the concepts and clear explanations of the calculations. Thank you so much!

  • @husseinshimal7567
    @husseinshimal7567 2 роки тому

    Your voice makes this easy to understand. Thank you

  • @siddhant.u
    @siddhant.u 9 років тому +1

    One picture is worth than million words!! , its proved by your lectures
    thank you for your contribution to education
    great job and keep it up!

  • @kimtaeyeonismyeverything
    @kimtaeyeonismyeverything 5 років тому +6

    Saving my butt from one math class to the next i swear to god 😭 thank you!!!!

    • @kristakingmath
      @kristakingmath  5 років тому +2

      You're welcome, I'm so glad I'm able to help!!

  • @rajendramisir3530
    @rajendramisir3530 6 років тому +1

    I like the patience and tenacity with which you explain how to evaluate this line integral example. You derived the first order parametric equations for each of the 3D coordinates well. I would like to see examples of line integrals of vector and scalar fields - such as work done by a vector field along a curve from point a to point b.

  • @arvincunningham1609
    @arvincunningham1609 9 років тому +2

    You are awesome when it comes to this calculus thing! I went through this semester without the aid of your videos much, and wish I had spent more time on those topics covered with the aid of your videos. Again Thank you for your time and efforts to place this information out where struggling students like myself can access it!

    • @kristakingmath
      @kristakingmath  9 років тому

      Arvin Cunningham Aw thanks! I'm happy I can help!

  • @chetanasingh7555
    @chetanasingh7555 8 років тому +3

    I never understood this concept so well before...you have an amazing voice and the way you explain things looks so simple!! Thanks a ton...keep uploading more... :)

    • @kristakingmath
      @kristakingmath  8 років тому +3

      I definitely will! Thank you for the support. I'm glad you're liking the videos. :)

  • @LateNightRituals
    @LateNightRituals 3 роки тому

    best thing that has ever happened to youtube. thank u

  • @erichendricks4810
    @erichendricks4810 9 років тому +1

    Great job explaining what a Line Integral actually represents with your picture. Very helpful!

  • @firstdbzmaker
    @firstdbzmaker 4 роки тому +1

    when t=0, f is at the starting point of the curve (0, 0, 0)
    when t=1, f is at the end point of the curve (1, 2, 3)
    so when you put from t=0 to t=1 into the parametric equations , you will have precisely the curve (line segment) described in the problem.
    Pretty much, we choose to parameterize from t=0 to t=1 to keep the integral simple.

  • @annl8343
    @annl8343 9 років тому +5

    More helpful than my teacher! Thank you

  • @ptyptypty3
    @ptyptypty3 9 років тому +8

    OMG.. I just started this Video and I'm at the 53 second mark ... and I had to Stop the Video so I could Post a comment!.. This Video is EXACTLY what I've been looking for!!.. THANK YOU KRISTA!!.. YOU're more of a QUEEN than a KING.. (doesn't the Queen have more power in Chess?) :D.. THANK YOU... I must have wasted 2 hours going through OTHER videos trying to figure out the Intuition of the LINE Integral.. and well.. I guess Fate saves the Best for LAST.. thank you Krista!!.. and depending on when you read this.. Merry Christmas.. :) ..

    • @kristakingmath
      @kristakingmath  9 років тому +2

      +Philip Y I'm really glad it helped, Philip! The line integral can be a tough thing to visualize, so I'm glad it's finally making sense. Merry Christmas to you too!

    • @nipunasudha
      @nipunasudha 8 років тому +1

      +Krista King | CalculusExpert.com you are awesome

  • @mariahslittlelamb8049
    @mariahslittlelamb8049 5 років тому

    love how straight to the point you are

  • @LazyChristy
    @LazyChristy 5 років тому +5

    When you give the video a thumbs up before you even watch it cus you know it's going to be awesome. And it is. Thank you. :)

  • @haimbenavraham1502
    @haimbenavraham1502 4 роки тому

    Now you understand why math is called the Queen of the Sciences. She's more artistic than the other guys.

  • @peterobrien8540
    @peterobrien8540 9 років тому +2

    Haha "loop back and start doing funky things" 10:32 love it :)

  • @jesroe5842
    @jesroe5842 3 роки тому

    Thank you. May you be blessed with many views and subscribers

  • @bryanwills8028
    @bryanwills8028 2 роки тому

    brilliant, what a great job of explaining all the steps

  • @DogsAreTheBest312
    @DogsAreTheBest312 7 років тому

    This is so much more helpful than my professor! I learned more in 10 min from you than in 50 from him

  • @johnhurley8918
    @johnhurley8918 10 років тому

    Thank you so much. I love how in depth the example and explanation were.

    • @kristakingmath
      @kristakingmath  10 років тому +1

      You're welcome, I hope it helped!! :D

  • @thiagomoreira29
    @thiagomoreira29 8 років тому +13

    Hi Krista King! I am glad to write to you again.
    I have another doubt.
    Why have we always, in parametrics equations, limit of integration of zero until one?
    Thank you!

  • @pattymckenna5485
    @pattymckenna5485 2 роки тому

    A comment regarding interpretation. The function w=f(x,y,z) is in 4space, so it can’t be drawn as a curve in 3space.
    Instead, I would suggest interpreting the function f with 3 independent variables and a fourth, dependent variable as a linear density function, imagining that the density of the material that makes up the line segment (think “wire”) varies, depending on the spot. The units on the linear density function f (the integrand before the “ds”) would be something like “grams per centimeter”. The symbol “ds” represents a tiny length of the wire (units: cm). When these get multiplied, we see that the integral is adding up “grams”, to find total mass of the “wire” (line segment) of variable density.

  • @Rgrazia1
    @Rgrazia1 7 років тому

    Great job, Krista. Keep going.

  • @itsrobin1son
    @itsrobin1son 8 років тому +1

    This, just as the rest of your videos are, was extremely helpful and easy to understand. I might be able to pass Calc 3 yet

  • @harshitsinghai1395
    @harshitsinghai1395 8 років тому

    Thanks a lot krista , you are a saviour !!

  • @jgc9199
    @jgc9199 5 років тому +1

    how do you determine the limits of integration to be 0

  • @kileyniemeyer6691
    @kileyniemeyer6691 10 років тому

    Amazing! Much better than my teacher! You saved me!

    • @kristakingmath
      @kristakingmath  10 років тому

      I'm so glad it helped!!

    • @kileyniemeyer6691
      @kileyniemeyer6691 10 років тому

      integralCALC Woah! First UA-cam to ever reply to me! Well since you actually see these you videos have been saving me all year! My prof only teaches theory and doesn't do any examples. You have no idea how thankful I am! :D

    • @kristakingmath
      @kristakingmath  10 років тому

      Kiley Niemeyer :D

  • @Kamnuma
    @Kamnuma 8 років тому

    This video was very helpful. Tnx a lot Krista!

  • @quentinmartinez1642
    @quentinmartinez1642 9 років тому +12

    I dont understand why bounds are always 0 to 1. Ive done plenty problems where the bounds are different

    • @grantedwards8546
      @grantedwards8546 8 років тому +4

      There are plenty of line integral problems in which the bounds aren't from 0 to 1, however these problems don't pertain to line segments. Line integrals can be executed for any surface.

    • @HAJFAJVGaming
      @HAJFAJVGaming 6 років тому

      Because everyone loves pi'e'

    • @johnjoseph6634
      @johnjoseph6634 5 років тому

      10.39 sec

  • @nhat1711
    @nhat1711 9 років тому +1

    If the equation was xyz^2 ds then do we have to have information about z=z(t) or not ? line segment from (0,0,0) to (1,2,3)

  • @patrickmchenry9746
    @patrickmchenry9746 5 місяців тому

    If the z parameter is dropped we have the area over a line in the x-y plane under a surface f(x,y) which should be greater than the area between the surface defined and the integral of the differential of arc length of the line from (0,0,0) to (1,2,3). If f(x,y) is the plane z=2 and x=t, y=t, (t goes from 0 to 1)
    we get the rectangle ( made of two triangles) with area 2√2. But if the z parameter =2t and x=t and y=t, then the area between the surface f(x,y) =2 and the parametrized line would seem to be the triangle of area√2 or one half of the total rectangular area. Formally correct but we seem to be in an extra dimension.

  • @aissaelwadjih4785
    @aissaelwadjih4785 6 років тому +2

    Shouldn't 3 variable scalar functions be in 4d space?

    • @youtubeuser_apxubks22h
      @youtubeuser_apxubks22h 6 років тому +1

      yeah, and that shadow thing for 2 variables... I'm not sure about that either.

  • @amandeeezyd
    @amandeeezyd 9 років тому

    integralCALC how do you know when to multiply f(r(t)) by the magnitude of r'(t), instead of just taking the dot product of f(r(t)) and r'(t) ??

  • @1light4love
    @1light4love 4 роки тому +1

    😧Watching it in awe like "WHY DIDN'T MY PROFESSOR JUST EXPLAIN IT LIKE THAT?!?"

    • @kristakingmath
      @kristakingmath  4 роки тому

      I'm so glad it helped! :)

    • @1light4love
      @1light4love 3 роки тому

      @@kristakingmath ACED my class, AND got nearly 100% on my last two exams after tunin into your examples and explanations, Krista🤓👍🙏
      Thank You!!

  • @lindsaywaterman2010
    @lindsaywaterman2010 2 роки тому

    One small point. My understanding is, it is the curve C that is divided uo in small portions, not the f(x,y,z).

  • @Behroozifyable
    @Behroozifyable 5 років тому

    Why does the curtain connects with z axis and not x or y axis? Which part of the problem states that or would it not matter which axis it goes back to in your drawing?

  • @Sagricon
    @Sagricon 7 років тому

    HI Kristen. I an not able to understand the very first bit how you replaced ds with dt??

  • @cheedu100
    @cheedu100 8 років тому

    What an amazing explanation!

  • @jarikosonen4079
    @jarikosonen4079 4 роки тому +1

    It can be correct, but how to be sure?
    What if the results is area of the curve between c and x or y -axis instead?
    If z=f(x,y) but here is z=f(x,y,z) which would be some type of recursive equation or something as that...
    Here f(x,y,z) does not present 3D-surface, but some type of potential in 3 dimensions. It should then select equipotential surface by setting x*e^(y*z)=constant to calculate the distance to this surface. If constant is zero that would represent the yz-plane. The results could be the area between rhe c and yz-plane rather than between c and z-axis. But i couldn't be sure.

  • @Ttooss2811
    @Ttooss2811 8 років тому

    can u tell me why u took the value of X to the difference between the two x coordinates.

  • @SharmyyBarmyy
    @SharmyyBarmyy 9 років тому

    integralCALC Hey I have a question, what if the line segment goes from (1,1,0) to (1,1,1) would x=0 , y=0, and z =1 ? Which in turn would mean that r(t)=tk

  • @ankeshpatel523
    @ankeshpatel523 8 років тому

    amazing xplaination ...........tnx to clear my concepts

  • @MrGolferguy22
    @MrGolferguy22 10 років тому

    the stuff under the square root is the same thing as r'(t) and x(t),y (t),z (t) is the same as F (r (t))

  • @baotrambelle
    @baotrambelle 6 років тому +1

    YOU DA QUEEN!!

  • @natnaelberhanu-i8w
    @natnaelberhanu-i8w 2 роки тому

    I need you to further explain why the bounds of integration are from 0 to 1

  • @DarkSlayerphlc
    @DarkSlayerphlc 5 років тому

    Thank you Professor!!!!!

  • @chummyigbo8844
    @chummyigbo8844 9 років тому +1

    She's good. Thank you loads.

  • @awesomewinter3103
    @awesomewinter3103 9 років тому +1

    this is amazing! thank you!

  • @MARIGO1957
    @MARIGO1957 8 років тому +1

    krista king you are amazing. you are the love of my life. i am from México

  • @maceyclausen2229
    @maceyclausen2229 Рік тому

    Thank you for your help:)

  • @gullumpanie
    @gullumpanie Рік тому

    I followed your calculation with great interest. However in this example the area between the function and the line (curtain) is about 71,62.. which is not the same like the line-integral which is 125,48.

  • @dennismutai9272
    @dennismutai9272 2 роки тому

    Thanks alot. You are really amazing

  • @antruong1575
    @antruong1575 6 років тому

    Really helpful, thank you.

  • @sabarishssibi3382
    @sabarishssibi3382 3 роки тому

    This is amazing👍

    • @kristakingmath
      @kristakingmath  3 роки тому +1

      Thanks, sabarish, I'm glad you liked it! :D

  • @eduardodelgado7873
    @eduardodelgado7873 6 років тому

    Wow never new we could just place what you equaled and just use the interval we started with instead of changeing the interval and

  • @sahilgoundar8244
    @sahilgoundar8244 3 роки тому +1

    Thank u ma'am ure brilliant

    • @kristakingmath
      @kristakingmath  3 роки тому +1

      You're welcome, Sahil, I'm happy to help! :)

  • @adarshpandey2354
    @adarshpandey2354 6 років тому

    thank you so much ma'am.

  • @esamh1640
    @esamh1640 8 років тому

    thank you Krista

    • @kristakingmath
      @kristakingmath  8 років тому +1

      You're welcome Esam! Glad it could help.

    • @esamh1640
      @esamh1640 8 років тому

      That is true. Thank you.

  • @Festus2022
    @Festus2022 2 роки тому

    Nice video!

  • @and_then_I_whispered
    @and_then_I_whispered 2 роки тому

    Thanks ma'am!!!

  • @salarchof7707
    @salarchof7707 9 років тому +5

    Are you sure that we take the "to-point" and subtract it from the "from-point" and multiply that by t? My book says something else! :(
    Straight-line segment is from (1,2,3) to (0, -1,1)
    and the book does it this way:
    r(t) = (i + 2j + 3k) + t(-i -3j - 2k) = (1-t)i + (2-3t)j + (3-2t)k
    but if i do if the way you decribe:
    x = (0-1)t = -t
    y= (-1-2)t = -3t
    z = (1 - 3)t = -2t

    • @nathanx.675
      @nathanx.675 7 років тому

      Salar Chof yes that’s exactly what I was thinking. I’m pretty sure you are doing the right thing

    • @Alexjandro537
      @Alexjandro537 6 років тому

      Salar Chof n(

    • @dylansanderson3663
      @dylansanderson3663 6 років тому

      The video has the question labelled "from (0,0,0) to (1,2,3) instead of what you wrote

  • @IsraelAraujoBR
    @IsraelAraujoBR 10 років тому +1

    thx! this helps a lot! :))

  • @mathsgnr8995
    @mathsgnr8995 5 років тому

    I need.. vector calculus book by pc matthews.please do help me.soft copy.please.

  • @oliviawolfley9113
    @oliviawolfley9113 7 років тому +1

    Awesome!!!

  • @IceSilver147
    @IceSilver147 7 років тому

    THANK YOU !!!!!!!! I might pass now

  • @AyushSharma-ux4fk
    @AyushSharma-ux4fk 8 років тому +1

    why limits of integral got transformed to 0 to 1........... is it compulsion that these would always be 0 to 1.

  • @hamptonford3066
    @hamptonford3066 6 років тому

    Great video

  • @Kudravets-Diana
    @Kudravets-Diana 3 роки тому

    Can someone help me with that:
    C is given by
    x=t^2
    y=t^3
    z=t^2
    Evaluate the integral under the region c .
    The integral is:
    Zdx+xdy+ydz.
    I have no idea what to do..
    How to solve it :/

    • @Test-ri2kr
      @Test-ri2kr 3 роки тому

      Michael Van biezen has a video on that

  • @dmelnick00
    @dmelnick00 10 років тому

    so are line integrals path dependent then?

    • @MrGolferguy22
      @MrGolferguy22 10 років тому

      Depends on whether the vector field is conservative. If so, then yes. Think about gravity in physics, gravity is conservative so the work done on an object is the same no matter what path it took. As long as the object started at a and ended up at b, the work is the same. If the vector field is nonconservative something like you pushing a chair across the room, the work changes because the longer the arc length, the more friction you have to push against.

  • @muhiebaljazzar4607
    @muhiebaljazzar4607 6 років тому

    Oh My God this is awesome

  • @cosmickitty9533
    @cosmickitty9533 8 років тому +1

    Krista Im writing the Pope to nominate you patron saint of mathematics

  • @youtubeuser_apxubks22h
    @youtubeuser_apxubks22h 6 років тому +1

    wait what? so an integral of a function of two parameters isnt volume, but a shadow? and an integral of a function of 3 parameters gives us volume? WHAT?!

  • @oprabin
    @oprabin 8 років тому

    thanks, once again
    ;)

  • @JimmyxMurphy
    @JimmyxMurphy 8 років тому

    thanks

  • @dhimanroy1671
    @dhimanroy1671 9 років тому

    I like your lecture

    • @kristakingmath
      @kristakingmath  9 років тому

      +Dhiman Roy Glad you liked it! Thanks for letting me know.

  • @oprabin
    @oprabin 8 років тому

    oh c'mon bro!
    that's sweet

  • @musakarrar9036
    @musakarrar9036 3 роки тому

    Can you help to solve exercises?

  • @teckrisnr1
    @teckrisnr1 8 років тому

    you just can`t draw the graph of f(x y z)=x*e^(y*z) in 3D, it means that aria is`nt in your 3D graph, it is in 4th dimension.

  • @md65000
    @md65000 6 років тому +2

    A 3D line integral does not calculate the area of ANYTHING --that drawing on the left at 3:06 is total nonsense! She knows how to do the computations but she has little insight or intuition into what they mean.

    • @maxjohnson8885
      @maxjohnson8885 6 років тому

      it represents the area under the curve.

  • @thessalonician
    @thessalonician 8 років тому

    Unfortunately youtube is full of videos that prove how stupid people are in the 21st century. Thanks for making an exemption (and proving me how geek I am for once more by watching this!:D )!! Nice video! What's the program that you are using as for the blackboard?? Really liked that (although that it would be better if it was larger). I would like to make something similar as for structural design.

    • @kristakingmath
      @kristakingmath  8 років тому

      +thessalonician I'm so glad you liked the video! I use a program called Sketchbook.

    • @thessalonician
      @thessalonician 8 років тому

      I use sketchbook as well. So the blackboard is probably a background. Many thanks!

    • @kristakingmath
      @kristakingmath  8 років тому +1

      +thessalonician Yep, the blackboard is just an image.

  • @mubarekhassen1493
    @mubarekhassen1493 7 років тому

    very niccc

  • @yuvra7781
    @yuvra7781 2 роки тому

    the first 7 minutes didnt make any sense to me, after you started doing the question then i understood

  • @BassaHassa
    @BassaHassa 6 років тому

    THICC

  • @thulaniedwardmasondo2280
    @thulaniedwardmasondo2280 8 років тому

    if you're going to explain two different methods... why not use two vids?

  • @notmareelnam7545
    @notmareelnam7545 10 років тому

    Marry me and teach me math every day please

  • @mohdtaufieyq4842
    @mohdtaufieyq4842 8 років тому

    Cute voice