I Solved A Quartic Equation in Two Ways

Поділитися
Вставка
  • Опубліковано 4 жов 2024
  • 🤩 Hello everyone, I'm very excited to bring you a new channel (aplusbi)
    Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡
    / @sybermathshorts
    / @aplusbi
    ⭐ Join this channel to get access to perks:→ bit.ly/3cBgfR1
    My merch → teespring.com/...
    Follow me → / sybermath
    Subscribe → www.youtube.co...
    ⭐ Suggest → forms.gle/A5bG...
    If you need to post a picture of your solution or idea:
    in...
    #polynomialequations #algebra #polynomials
    via @UA-cam @Apple @Desmos @NotabilityApp @googledocs @canva
    PLAYLISTS 🎵 :
    Number Theory Problems: • Number Theory Problems
    Challenging Math Problems: • Challenging Math Problems
    Trigonometry Problems: • Trigonometry Problems
    Diophantine Equations and Systems: • Diophantine Equations ...
    Calculus: • Calculus

КОМЕНТАРІ • 21

  • @NadiehFan
    @NadiehFan 9 місяців тому +5

    In fact the second method is not as contrived as you make it out to be, it can be used to solve any quartic, even quartics that _do_ have a cubic term. If we add 2kx² + k² to both sides of
    x⁴ = 5x² + 6x + 5
    we have
    x⁴ + 2kx² + k² = 5x² + 6x + 5 + 2kx² + k²
    which is
    (x² + k)² = (2k + 5)x² + 6x + (k² + 5)
    Now the left hand side is a perfect square regardless of the value of k, but the quadratic in x at the right hand side will be a perfect square if and only if its discriminant is zero. So, in order to have a perfect square on both sides of our quartic equation k must satisfy
    36 − 4(2k + 5)(k² + 5) = 0
    or
    (2k + 5)(k² + 5) = 9
    This is a cubic equation in k which we could solve formally, but since the quartic equation we need to solve is a competition problem and therefore likely to have a nice factorization into two quadratics with integer coefficients we should start by looking for integer values of k that satisfy the condition for the right hand side of our quartic to become a perfect square. If that fails, you should also look for integer multiples of ½ (think about that).
    Clearly, if k is an integer, then the product (2k + 5)(k² + 5) can only equal 9 if we have k² + 5 = 9 and 2k + 5 = 1 which implies k = −2. With this choice for k the equation
    (x² + k)² = (2k + 5)x² + 6x + (k² + 5)
    becomes
    (x² − 2)² = x² + 6x + 9
    which gives
    (x² − 2)² = (x + 3)²

    • @SyberMath
      @SyberMath  9 місяців тому

      Very nice! Thank you ❤️

  • @bosorot
    @bosorot 9 місяців тому +2

    4:10 . Does not need a cubic equation . Just use the rational root theorem, b=5 and c=-1 or b=-5 and c= 1 . Only the later is the answer.

  • @mcwulf25
    @mcwulf25 9 місяців тому +4

    If you only knew how I feel when I see you make a mistake. And how the world feels safe again when you spot it three lines later!!!

    • @kwiky5643
      @kwiky5643 9 місяців тому +1

      😂

    • @SyberMath
      @SyberMath  9 місяців тому +2

      I don’t know what to say! 😁🤪

  • @luggepytt
    @luggepytt 9 місяців тому +3

    Third method:
    Add x²+1 to both sides. Then we get some nice numbers:
    x⁴+x²+1 = 6x²+6x+6
    Hunch: 6x²+6x+6 is divisible by x²+x+1. It feels like x⁴+x²+1 is too.
    Let’s try if we can construct x⁴+x²+1 from x²+x+1.
    Start with x²+x+1
    Add x²(x²+x+1), and we get
    x⁴+x³+2x²+x+1
    Now subtract x(x²+x+1), and we get
    x⁴+x²+1
    So we have proved that;
    x⁴+x²+1 = (x²-x+1)(x²+x+1)
    Now, we can factor both sides in our equation
    x⁴+x²+1 = 6x²+6x+6
    like this:
    (x²-x+1)(x²+x+1) = 6(x²+x+1)
    Move everything to the left hand side:
    (x²-x-5)(x²+x+1) = 0
    Finally, we just have two quadratics to solve:
    (x²-x-5) = 0
    or
    (x²+x+1) = 0
    which is trivial.

    • @mcwulf25
      @mcwulf25 9 місяців тому

      Genius!
      I did what Syber did in method 2.

    • @NadiehFan
      @NadiehFan 9 місяців тому +3

      Nice. Note that the zeros of x² + x + 1 are the complex cube roots of unity since (x − 1)(x² + x + 1) = x³ − 1. If ω is either of the complex cube roots of 1 we therefore have ω² + ω + 1 = 0 which implies ω⁴ + ω² + 1 = ω + ω² + 1 = 0 since ω⁴ = ω³·ω = 1·ω = ω. So, each of the zeros of x² + x + 1 is a zero of x⁴ + x² + 1 which implies that x² + x + 1 is a factor of x⁴ + x² + 1. Similarly, x² + x + 1 is a factor of e.g. x⁸ + x⁴ + 1 and x¹⁰ + x⁵ + 1 and generally of any trinomial xᵐ + xⁿ + 1 whenever m ≡ 2 (mod 3) and n ≡ 1 (mod 3) or vice versa.

    • @SyberMath
      @SyberMath  9 місяців тому +1

      pretty good

  • @giuseppemalaguti435
    @giuseppemalaguti435 9 місяців тому +3

    Risulta semplicemente x^4-4x^2+4=x^2+6x+9....

  • @9허공
    @9허공 Місяць тому

    subtracting x both sides, x^4 - x = 5x^2 + 5x + 5
    => x(x^3 - 1) = x(x - 1)(x^2 + x + 1) = 5(x^2 + x + 1)
    => (x^2 + x + 1) (x^2 - x - 5) = 0

  • @scottleung9587
    @scottleung9587 9 місяців тому

    Got em all!

  • @bobbyheffley4955
    @bobbyheffley4955 9 місяців тому

    Method 1: Descartes method
    Method 2: Ferrari method

  • @adamsmithson486
    @adamsmithson486 9 місяців тому

    Pozdrawiam serdecznie i życzę miłego dnia

  • @rakenzarnsworld2
    @rakenzarnsworld2 9 місяців тому

    x^4-5x^2+6x=5
    x = 1 -> 1-5+6=2
    x = 2 -> 16-20+12=8
    Therefore, 1 < x < 2
    x = -1 -> 1-5-6=-10
    x = -2 -> 16-20-12=-16
    x = -3 -> 81-45-30=6
    Therefore, -3 < x < -2

  • @sendai-shimin
    @sendai-shimin 9 місяців тому

    After a little thinking...
    I did factorize forcibly.
    (x^2 + x + 1)(x^2 - x -5)

    • @bobbyheffley4955
      @bobbyheffley4955 9 місяців тому

      The solutions to the left factor are the complex cube roots of 1.

  • @broytingaravsol
    @broytingaravsol 9 місяців тому

    so easy one

    • @SyberMath
      @SyberMath  9 місяців тому

      why?

    • @broytingaravsol
      @broytingaravsol 9 місяців тому

      @@SyberMath shifting an x in RHS to LHS leads to 2 quadratic formulae and the solutions