A Nice Exponential Equation

Поділитися
Вставка
  • Опубліковано 9 лис 2024

КОМЕНТАРІ • 11

  • @surendrakverma555
    @surendrakverma555 Місяць тому

    Thanks Sir 👍

  • @rogerkearns8094
    @rogerkearns8094 Місяць тому

    _What's the word?... Vertical tangents._
    I.e., vertical asymptotes.
    All very thoroughly worked out, thank you.

  • @dan-florinchereches4892
    @dan-florinchereches4892 Місяць тому

    X=(1/y)^2 so original becomes
    (1/y^2)^y=1/16
    So y^2y=16=2^4
    So let f(y)=y^(2y) then f'(y)= y^2y*ln(y)+y^2y which is 0 when lnx=-1 . Since y^2y is always positive then the derivative changes sign only at y=e^-1. Since lim(y->0) y^2y=1 we only have the obvious solution on the right side when y=2
    Going back x=1/y^2=1/4

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 Місяць тому

    1/16=(¼)²
    Change the exponent: 2=1/½
    =1/sqrt(¼)
    x=¼

  • @trojanleo123
    @trojanleo123 Місяць тому

    x = 1/4

  • @anestismoutafidis4575
    @anestismoutafidis4575 Місяць тому

    1/x^(x)^1=2=1/16 1/4^(4)^1/2
    1/4^2=1/16 x=4, or
    1/2^2^2=1/16 x=2^2

  • @Quest3669
    @Quest3669 Місяць тому

    (1/4)^2 i. e x= 1/4

  • @yakupbuyankara5903
    @yakupbuyankara5903 Місяць тому

    X=1/4

  • @RedRad1990
    @RedRad1990 Місяць тому

    I can't with this guy. He has a main channel for videos, creates a secondary channel specifically for shorts and then uploads long videos on it. Why'd you even called it "SyberMath Shorts"?

  • @Lollybully
    @Lollybully Місяць тому +1

    4 and -4?