Balancing BSTs: From Theory to Practice with Python and Visual Examples!

Поділитися
Вставка
  • Опубліковано 21 гру 2024

КОМЕНТАРІ • 10

  • @manankoradiya9308
    @manankoradiya9308 Місяць тому +1

    This is one the best videos which explains all the points perfectly. It helped me a lot with my assignments. Thank you man.

    • @bvdlio
      @bvdlio  Місяць тому +1

      Glad it helped!

  • @anon_y_mousse
    @anon_y_mousse Рік тому

    This is your best video yet. You illustrated a key point that people forget about binary searches in that you can collapse a tree into an array and vice versa and a sorted array is easily converted back into a binary tree that's perfectly balanced.

  • @codingcompetitiveprogrammi6118

    this is best video about algorithm don forget upload more like this thanx for share knowledge

    • @bvdlio
      @bvdlio  Рік тому

      Thank you, I will.

  • @rastooooo
    @rastooooo 8 місяців тому

    thanks , i have the same thing with few differences as my task for uni, it helped alot

  • @themvlek
    @themvlek 2 місяці тому

    That was great video ❤

  • @Marco-h5d4n
    @Marco-h5d4n 2 місяці тому

    great video but do you really need the background music?

    • @bvdlio
      @bvdlio  2 місяці тому +1

      Thanks!
      Honestly, I don't know. I've asked viewers through polls, but I receive mixed results.
      It can quickly distract or be annoying of if its too loud.

  • @ozzy-fr7vj
    @ozzy-fr7vj 4 місяці тому

    Constant space, linear time (Most Optimal way to balance bst) Day-Stout-Warren (DSW) algorithm implemenation in rust and python
    RUST ->
    // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    // pub val: i32,
    // pub left: Option,
    // pub right: Option,
    // }
    //
    // impl TreeNode {
    // #[inline]
    // pub fn new(val: i32) -> Self {
    // TreeNode {
    // val,
    // left: None,
    // right: None
    // }
    // }
    // }
    use std::{rc::Rc, cell::RefCell};
    type T = Option;
    macro_rules! borrow_mut {
    ($option:expr) => { $option.as_ref().unwrap().borrow_mut() };
    }
    macro_rules! borrow {
    ($option:expr) => { $option.as_ref().unwrap().borrow() };
    }
    impl Solution {
    pub fn balance_bst(root: T) -> T {
    fn create_right_skewed_vine_tree(root: T) -> T {
    let vine_head = Some(Rc::new(RefCell::new(TreeNode::new(0))));
    borrow_mut!(vine_head).right = root;
    let mut current = vine_head.clone();
    while borrow!(current).right.is_some() {
    if borrow!(borrow!(current).right).left.is_some() {
    let right = borrow!(current).right.clone();
    rotate_right(current.clone(), right);
    } else {
    current = current.unwrap().borrow().right.clone();
    }
    }
    vine_head
    }
    fn get_right_skewed_vine_tree_node_count(mut root: T) -> i32 {
    let mut count = 0;
    while root.is_some() {
    count += 1;
    root = root.unwrap().borrow().right.clone();
    }
    count
    }
    fn rotate_right(parent: T, node: T) {
    let temp = borrow!(node).left.clone();
    borrow_mut!(node).left = borrow_mut!(temp).right.take();
    borrow_mut!(temp).right = node;
    parent.unwrap().borrow_mut().right = temp;
    }
    fn rotate_left(parent: T, node: T) {
    let temp = borrow!(node).right.clone();
    borrow_mut!(node).right = borrow_mut!(temp).left.take();
    borrow_mut!(temp).left = node;
    parent.unwrap().borrow_mut().right = temp;
    }
    fn rotation_left_by_amount(mut root: T, count: i32) {
    for _ in 0..count {
    let right = borrow!(root).right.clone();
    rotate_left(root.clone(), right);
    root = root.unwrap().borrow().right.clone();
    }
    }
    //create vine
    let vine_head = create_right_skewed_vine_tree(root);
    // get total node count
    let nodecount = get_right_skewed_vine_tree_node_count(borrow_mut!(vine_head).right.clone());
    // get node count of perfect tree
    let mut perfect_tree_node_count = 2_i32.pow(((nodecount + 1) as f32).log2().floor() as u32) - 1;
    //shift the extra nodes to the left
    rotation_left_by_amount(vine_head.clone(), nodecount - perfect_tree_node_count);
    // make rest of the tree
    while perfect_tree_node_count > 1 {
    perfect_tree_node_count /= 2;
    rotation_left_by_amount(vine_head.clone(), perfect_tree_node_count);
    }
    vine_head.unwrap().borrow_mut().right.take()
    }
    }
    PYTHON ->
    # Definition for a binary tree node.
    # class TreeNode:
    # def __init__(self, val=0, left=None, right=None):
    # self.val = val
    # self.left = left
    # self.right = right
    class Solution:
    def balanceBST(self, root: TreeNode) -> TreeNode:
    def rotateLeft(parent, node):
    temp = node.right
    node.right = temp.left
    temp.left = node
    parent.right = temp
    def rotateRight(parent, node):
    temp = node.left
    node.left = temp.right
    temp.right = node
    parent.right = temp
    def rotateLeftByAmount(root, amount):
    for _ in range(amount):
    rotateLeft(root, root.right)
    root = root.right
    def createVine(root):
    vinehead = TreeNode(0, None, root)
    root = vinehead
    while root.right:
    if root.right.left: rotateRight(root, root.right)
    else: root = root.right
    return vinehead
    def getNodeCount(root):
    count = 0;
    while root:
    count += 1
    root = root.right
    return count
    root = createVine(root)
    nodecount = getNodeCount(root.right)
    countOfPerfectTreeNodes = int(math.pow(2, math.floor(math.log2(nodecount + 1)))) - 1
    rotateLeftByAmount(root, nodecount - countOfPerfectTreeNodes)
    while countOfPerfectTreeNodes > 1:
    countOfPerfectTreeNodes //= 2
    rotateLeftByAmount(root, countOfPerfectTreeNodes)
    return root.right