Uniform Continuity on Compact Sets and Cauchy Sequences

Поділитися
Вставка
  • Опубліковано 10 січ 2025

КОМЕНТАРІ • 5

  • @armanavagyan1876
    @armanavagyan1876 9 місяців тому +1

    Thanks PROF 👍

  • @sumittete2804
    @sumittete2804 8 місяців тому

    Sir, If a function is uniformly continuous on a closed interval, could we refine the definition of uniform continuity by replacing the condition |x-y| < δ and |f(x) - f(y)| < ε with |x-y| ≤ δ implying |f(x) - f(y)| ≤ ε ?

  • @angadbhatti123123
    @angadbhatti123123 7 місяців тому

    But when convergence point is not in compact set non uniform function will also be continuous in compact set.....
    I can say y = x^2 is continuous in compact set [1,5] so it should be uniform function....won't this be a contradiction to the theorm?

    • @mikethemathematician
      @mikethemathematician  7 місяців тому

      @angadbhatti123123 good point! I was assuming throughout the video that E was a subset of the domain of f.