Thin-Walled PRESSURE VESSELS in 8 MINUTES - Mechanics of Materials

Поділитися
Вставка
  • Опубліковано 18 жов 2024

КОМЕНТАРІ • 37

  • @JesusMartinez-zu3xl
    @JesusMartinez-zu3xl Рік тому +9

    Thank you!! you literally explained this concept way better than a hour lecture.

  • @sefofiwilliamlebea4071
    @sefofiwilliamlebea4071 Рік тому +5

    I can't believe how well this 10 minutes video has prepared me for my Structural Mechanics test

  • @pmarkpmark
    @pmarkpmark 2 роки тому +1

    This is best mechanics of materials video ever!

  • @stevengarcia7965
    @stevengarcia7965 3 роки тому +4

    short and concise thanks!

  • @osamakhattab5306
    @osamakhattab5306 3 роки тому +4

    Impressive Explanation& Animation

  • @pandianshanthakumar4163
    @pandianshanthakumar4163 2 роки тому +2

    Great video.. with simple examples..and clear cut explanations. Thanks a lot .....

  • @vishalsejpal6018
    @vishalsejpal6018 Рік тому

    Thank you so much man. This was really great . Cant thank you enough

  • @zarapiryaei5569
    @zarapiryaei5569 3 роки тому +2

    This channel is amazing 🤩 Thank you so much 🙏🏻

  • @ray420_mond
    @ray420_mond 9 місяців тому

    Very good explanation

  • @MK-fq3fk
    @MK-fq3fk 4 місяці тому

    Great video.thanks

  • @asseilalhlafi128
    @asseilalhlafi128 Рік тому

    Thanks a lot , really an amazing explanation ( short and nice representation )

  • @enesaktas42
    @enesaktas42 2 роки тому +1

    Its terse video. Thanks for that good expression

  • @zepnr4741
    @zepnr4741 Рік тому

    Thank you

  • @vincentmarotta9800
    @vincentmarotta9800 3 місяці тому

    Question with respects to the solved answer:
    Why is σ2 ("Axial Stress") considered the maximum stress, specifically?
    Like ok, I understand the Moor's Circle and the graph shows us when you take in to account all three stresses (σ1, σ2, σ3=0), the maximum shear stress (Τmax) is equal to σ2, but WHY is this the most significant factor with respects to calculating shear stress? I'm guessing something physically is happening to this structure where the axial stress is somehow the weakest factor, but the only thing I can guess is "σ2 has the lowest number, and therefore less stress will cause it to break. This doesn't apply to σ3 because even though we defined σ3=0, it doesn't imply it needs 0 MPa force to break the vessel, but rather, σ3 doesn't play a factor with respects to the forces applied." Otherwise, it appears when calculating for any shape, the σ value that has the SMALLEST value (other than σ3=0 which we ignore for some reason) will result in the weakest force to break the structure.
    And to comment on the FOS to justify it: All this is saying is if you want to be CAUTIOUS and design the structure to not fail, having a factor of safety ratio of FOS = 2.94 should be "safe enough." I guess you could look at FOS as a way to determine/justify how "safe" a particular design is. It appears a very low FOS is dangerous, and as per MOST standard, a FOS near or at 3.0 is ideal (aka: "You should design your vessel to withstand 3x the force the material can handle before breaking). So what is considered "too low" in the real world? Each material has its own standards, but it seems most are around something like 1.4 as the bare minimum, but also super risky.
    Not a question involving FOS, just trying to justify its holistic existence.
    Thanks you for these videos. You're actually taking information and justifying it, showing examples and what geometry each piece specifically applies to, and that's more than what most doctorate-level professors attempt.

  • @TIAGONICOLASSALCOVICH
    @TIAGONICOLASSALCOVICH 3 місяці тому

    Awesome video.
    I wonder, what happens with sigma_r, the radial sigma, isn't there a non-zero value of p in the internal diameter? Thx

  • @AmrGamal-j9f
    @AmrGamal-j9f Рік тому +2

    could you tell me what is that application that you use when doing such a video

  • @michaelmcleary8566
    @michaelmcleary8566 2 роки тому +1

    I can't normally cope with AI voice overs but this is a good presentation. The complete lack of background music is a BIG plus. I'll check out your channel.

  • @ayushchoubey635
    @ayushchoubey635 8 місяців тому

    Thanks alot !

    • @ayushchoubey635
      @ayushchoubey635 8 місяців тому

      Your precise and concise videos are very awesome

  • @usmanzafar7293
    @usmanzafar7293 Рік тому

    Excellent videoS

  • @taijmohabeer4515
    @taijmohabeer4515 3 місяці тому

    Heya, loved the vid, but please do tell what drawing program you use. Thanks in advance

  • @rutho.6282
    @rutho.6282 2 роки тому

    grazie

  • @HarshaVardhan-jq4lp
    @HarshaVardhan-jq4lp 2 роки тому +1

    Bro a kind request
    Can u upload for thick cylinders too 😀

  • @arthuradeodato4774
    @arthuradeodato4774 2 роки тому +1

    Congratulations for your job. Amazing video. May I ask you what software did you use to draw this class ? Thanks a lot.

  • @abhijust321
    @abhijust321 Рік тому

    What should be done if we have watwr proof camera capsules for depth of water(submersible), are this equation still valid, say if my capsule is at depth of 4000m under water and it's cylindrical with 2 hemispherical flanged and sealed ends. So should we take ultimate compression strength of steel for Design and pressure will be from reverse direction?

  • @mengeshashiferaw1809
    @mengeshashiferaw1809 7 місяців тому

    great

  • @baristhegreat365
    @baristhegreat365 2 роки тому +1

    best.

  • @BenHeacox
    @BenHeacox 3 місяці тому

    @2:02 When I distribute the 2 on the right side of the equal sign, i get 2 * delta Z. Is that correct? I feel like I am doing something wrong because I can't get from
    p ( 2r * delta Z) = sigma * 2 (t * delta Z)
    to
    sigma =( p * r ) / t

  • @ceeceeceek
    @ceeceeceek 10 місяців тому

    if it’s pipe with open-ended, does it have longitudinal stress?

  • @abdullahalrashed7301
    @abdullahalrashed7301 2 роки тому +1

    It has a pretty good explanation with imaginable Diagram. but you need to slow down a bit❤️

    • @michaelmcleary8566
      @michaelmcleary8566 2 роки тому +2

      You can adjust the speed yourself if you wish from the 'settings' button in the toolbar.

  • @azeez6081
    @azeez6081 2 роки тому

    brother i want to know how we can calculate thickness which is subjected to transverse UDL loading.. how can we calculate the thickness of end flange of hydraulic cylinder..

  • @BenitoRondilla
    @BenitoRondilla 8 місяців тому

    What about the maximum shearing stress in the spherical?

  • @PortiaBorngreat
    @PortiaBorngreat 2 роки тому +1

    Great video but can it slow down a bit

  • @glaynrifans4474
    @glaynrifans4474 10 місяців тому +1

    Why Rad stress is zero?

  • @sanjaysharma-sj7fj
    @sanjaysharma-sj7fj Рік тому

    FACTOR OF SAFETY 2.941