Is this hard integral from the 2020 Berkeley Math Tournament really that hard?

Поділитися
Вставка
  • Опубліковано 18 січ 2025

КОМЕНТАРІ • 67

  • @vadymshtabovenko3532
    @vadymshtabovenko3532 2 роки тому +67

    blackpenredpen as well as you is guy whom i can be grateful for me being able to solve math-olimpiad integrals, both of you are the best

    • @maths_505
      @maths_505  2 роки тому +15

      Ah man you almost made me cry tears of joy there🥺
      Thank you so much

  • @GiornoYoshikage
    @GiornoYoshikage 2 роки тому +6

    Simple and insane integral! Sure the experience helps finding clear and beautiful approaches!

  • @ernestschoenmakers8181
    @ernestschoenmakers8181 20 днів тому

    One can also apply Feynman's trick where you transform x into arctan(tanx) and where you put the variable a inside this arctan function. This becomes arctan(a*tanx) and differentiate under the integral sign with respect to a.

  • @genosingh
    @genosingh 10 місяців тому +1

    ngl the writing tanx as cotx part is prolly the hardest part, as I never would've even thought about using ibp in this.

  • @TanmaY_TalK
    @TanmaY_TalK Рік тому +2

    Whenever I see 0 to pi/2 my brain always tells to apply king's property

  • @そるそる-e5r
    @そるそる-e5r 11 місяців тому +1

    My friends solved lim[x→0]xln(sinx) in this elegant way:
    lim[x→0]xln(sinx)
    =lim[x→0] x/sinx * sin(x)ln(sinx)
    =1 * 0=0
    (∵lim[x→0]sinx/x=0,
    lim[t→0]tln(t)
    =-lim[s→∞]ln(s)/s=0)

  • @bjornfeuerbacher5514
    @bjornfeuerbacher5514 Рік тому +1

    Geometrically, this is the area under the "quadratrix" (of Hippias) - or is proportional to that area, depending on the exact values you choose for the parameters of the quadratrix.

  • @francis6888
    @francis6888 Рік тому +1

    09:42 an even easier thing to do is substitute t for pi/2 - t since the ln of an even function is still an even function.

    • @peternyekete6802
      @peternyekete6802 17 днів тому

      Very interesting observation. Kindly rework the problem and post it for me. Am trying to learn the techniques

  • @TanmaY_TalK
    @TanmaY_TalK Рік тому +1

    Ans is pi/2 ln2 not negetive pi/2 ln2 !
    [xlnsinx]0 to pi/2 then -I1 that's why your answer has an extra spicy '-' (-ve)

  • @genosingh
    @genosingh 10 місяців тому

    For proving that int from 0 to pi is same as 2 times(int from 0 to pi/2), of ln(sinx), you actually don't even have to look at the graph, you can straight up divi the integral into 2 parts one from 0 to pi/2 and the other from pi/2 to pi, and apply king's rule on the second one and sub x - pi/2 = t, and you'll prove that statement.

  • @師太滅絕
    @師太滅絕 Рік тому

    What about X/tan x = Xcos x / sin x, then we do substitution?

  • @vinculum_mhm
    @vinculum_mhm Рік тому

    great approach

  • @renesperb
    @renesperb 2 роки тому +2

    Another way of calculating the integral of ln(sinx) is to write sinx as 1/2i *Exp[i x]*(1-Exp[-2 i x]. Then one can simplify the ln of this expression
    as -ln 2 - i π /2 + i x+ ln(1- Exp[- 2 i x). The integral from 0 to π of the last term is zero and the integral of the first three terms gives -π ln2.
    But I find your solution more elegant.

    • @maths_505
      @maths_505  2 роки тому +2

      Thanks
      That's why I wanted to share it
      I often look for solutions using real techniques only

  • @ronnykazadi352
    @ronnykazadi352 Рік тому

    5:27 where does the phase shift come from? Why replace x by pi/2 - x? We know cosx=sin(pi/2 - x) but i dont understand your step

    • @maths_505
      @maths_505  Рік тому

      It's like a substitution t=pi/2-x but we rename the dummy variable "t" back to "x" all in one step

    • @ronnykazadi352
      @ronnykazadi352 Рік тому

      @@maths_505 Ohhhhh I understand. But if that's the case then, you missed minus sign because by substitution, the integral would be from "pi/2 to 0" but to switch it back to "0 to pi/2" there is going to be a minus sign in front of the integral. That explains why your final answer is " minus pi/2 ln2" instead of "pi/2 ln2" check the minus sign that you forgot. Great video by the way.

    • @maths_505
      @maths_505  Рік тому +2

      There is no missing negative sign🤦‍♂️🤦‍♂️🤦‍♂️....t=pi/2 - x means dt=-dx....
      The extra negatives cancel out!

    • @takemyhand1988
      @takemyhand1988 Рік тому

      ​@@ronnykazadi352it's called King's property

  • @kamalsaleh6497
    @kamalsaleh6497 Рік тому +1

    So how do we use complex analysis for the ln(sin x)?

    • @ガアラ-h3h
      @ガアラ-h3h Рік тому

      Add I and subtract I then use log rules and Euler identity and do integration by parts cancel split integral into two piece then you basically have very easy integral

  • @emanuellandeholm5657
    @emanuellandeholm5657 Рік тому +1

    Taking notes...
    Edit: huge fan of bprp too :)

  • @leesweets4110
    @leesweets4110 2 роки тому +6

    I took complex analysis. Very interesting subject. But it was only introductory level. Im not quite sure how complex analysis can be used to solve an integral. Can we have a lesson on that?

    • @maths_505
      @maths_505  2 роки тому +2

      Yeah I plan on uploading an entire course on that
      Probably once I'm done with the course on DEs
      Oh snap I forgot to upload the homework solution 🤦‍♂️
      Ah well...I'll do it tomorrow with another video too

    • @maths_505
      @maths_505  2 роки тому +1

      In the meantime I plan on uploading some content on complex integration too

    • @moeberry8226
      @moeberry8226 2 роки тому

      Be ready for Euler’s formula Boys.

  • @Krishnajha20101
    @Krishnajha20101 Рік тому

    How did you get the negative sign in the end?

  • @utuberaj60
    @utuberaj60 Рік тому

    Appreciate your elementary method to solve this integral in contrast to the Feynman technique used by Blackpenredpen- who's videos I watch and subscribe too. But I see a discrepancy in the end result using the above two techniues- please pause at 4:30 of your video. Your answer is (-) Pi/2 * (ln2), whereas Blackpenredpen result is the same BUT is positive. I tried boththe methods, and confirmed this.
    Can you explain why this discrepancy? The methods seem Ok.

    • @ガアラ-h3h
      @ガアラ-h3h Рік тому

      They both use a lengthy tiring method use kings rule and multiply to instantly kill the tan x then just integrate a polynomial and donedio

    • @MarceloKatayama
      @MarceloKatayama Рік тому

      His end result is, in fact, positive. This is because his integral has a negative sign, which means that (-pi/2 ln2) is multiplied by -1, which nets pi ln2 /2

  • @thealternativefactor6694
    @thealternativefactor6694 Рік тому

    My head hurts..

  • @Shadow-Presentations
    @Shadow-Presentations 2 роки тому

    So what is the actual solution of this? Like when do we take what value??

  • @par22
    @par22 2 роки тому

    You lost me at 5:30 when you did the phase shift.
    How can you equate sin x = sin (pi/2 - x) = cos x ?
    sin x is not cos x, so it wouldn't be 2*I1... very confused.

    • @maths_505
      @maths_505  2 роки тому +3

      Oh there's a video proving this transformation
      ua-cam.com/video/59mHWGipCFQ/v-deo.html
      It's in the first 3 or 4 minutes (1st property)

    • @par22
      @par22 2 роки тому

      @@maths_505 Awesome, thank you! I get it now. I completely forgot about that transformation

    • @maths_505
      @maths_505  2 роки тому +1

      @@par22 no problem mate
      It's a pretty useful one too especially for trig integrals

  • @holyshit922
    @holyshit922 2 роки тому +1

    Do you want indefinite integral which Wolfram alpa is unable to calculate ?
    Int(x/sqrt((x+2)^2+exp(x)),x)
    Hint 1
    Rewrite integral as
    Int(x/sqrt((x+2)^2+exp(x)),x)=Int(1+(x/sqrt((x+2)^2+exp(x))-1),x)
    then you have to integrate two integrals but first one is easy
    Int(1,x)+Int((x-sqrt((x+2)^2+exp(x)))/sqrt((x+2)^2+exp(x)),x)
    Hint 2
    To calculate integral
    Int((x-sqrt((x+2)^2+exp(x)))/sqrt((x+2)^2+exp(x)),x)
    multiply numerator and denominator by x+2+sqrt((x+2)^2+exp(x))
    to get
    Int(1/(x+2+sqrt((x+2)^2+exp(x)))((x-sqrt((x+2)^2+exp(x)))(x+2+sqrt((x+2)^2+exp(x))))/sqrt((x+2)^2+exp(x)),x)
    then multiply numerator and you should see suitable substitution

    • @maths_505
      @maths_505  2 роки тому

      Damn!
      That is a good idea
      I'll keep it in mind and I'll mention you in the video too

  • @farhadazadi
    @farhadazadi 2 роки тому

    Hey may I ask what software you are using to write?

  • @alexliu801
    @alexliu801 Рік тому

    awesome!!!

  • @holyshit922
    @holyshit922 Рік тому

    Int(ln(sin(x)),x=0..Pi) = Int(ln(sin(x)),x=0..Pi/2)+Int(ln(sin(x)),x=Pi/2..Pi)
    u = Pi-x
    du=-dx
    Int(ln(sin(x)),x=0..Pi) = Int(ln(sin(x)),x=0..Pi/2)+Int(ln(sin(Pi-u))(-1),u=Pi/2..0)
    Int(ln(sin(x)),x=0..Pi) = Int(ln(sin(x)),x=0..Pi/2)+Int(ln(sin(u)),u=0..Pi/2)
    Int(ln(sin(x)),x=0..Pi) = 2Int(ln(sin(x)),x=0..Pi/2)

  • @zahari20
    @zahari20 2 роки тому

    There is no such thing as Feinman integration. This is the Leibniz rule for integrals with parameter.

  • @moeberry8226
    @moeberry8226 2 роки тому

    You can say what you want about blackpenredpen but he actually speaks good English and has over a million subscribers which means there’s over a million people and me who don’t agree with you.

    • @maths_505
      @maths_505  2 роки тому

      Definitely one of the GOATs of UA-cam maths

    • @spore124
      @spore124 2 роки тому

      My friend you have formed a parasocial relationship with a person who does math problems on UA-cam.

    • @moeberry8226
      @moeberry8226 2 роки тому

      @@spore124 so when I state a fact about another person that means I’m in a para social relationship with that person? You sound like a 5 year old kid.

    • @spore124
      @spore124 2 роки тому

      @@moeberry8226 Well, ya. You didn't post the comment as a reply to a comment and it doesn't seem relevant to anything in the video, and then you conflated 1 million subscribers as being a hivemind that thinks the same. A textbook case, right? We're not members of devout Pythagorean societies, this is just a nice place to work out math problems and learn new methods. Cool off with a nice walk or calculate a couple stress free derivatives.

    • @moeberry8226
      @moeberry8226 2 роки тому

      @@spore124 your 100 percent wrong, I posted in response to another person saying he speaks bad English and saying he doesn’t like Blackpenredpen and I stated that a lot of people who view math channels do not agree with him including myself. Nothing is conflated other than you and your sarcasm. Your opinions don’t matter to facts.

  • @user-he4em5zx8s
    @user-he4em5zx8s Рік тому +2

    Explain x->ㅠ/2-x
    Plz

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 Рік тому

      Essentially, that only uses that if you integrate over the interval 0 to pi/2, sin(x) and cos(x) will take on exactly the same values, only in a different order.

    • @takemyhand1988
      @takemyhand1988 Рік тому

      It's called King's property of integrals
      For a definite integration, if the bounds are a to b. Then the f(x) can be substituted as f(a+b-x).

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 Рік тому

      @@takemyhand1988 That's just restating the method in general, not explaining why it actually works.

    • @takemyhand1988
      @takemyhand1988 Рік тому

      @@bjornfeuerbacher5514 maybe he was confused where pi/2- x came from.

    • @brunojani7968
      @brunojani7968 Рік тому

      Google variable substitution. Image you let t = pi/2-x, and a variable is only a label, and so you change it back to x

  • @prollysine
    @prollysine Рік тому +1

    Hi Math 505, do you think ? int xctgx dx, /D, I/, --> =xlnsinx |0,pi/2) |0,pi/2|=0, stays: -int(ln(sinx)dx, -->/f(x)=f(a+b-x)/, int (ln(sinx)+ln(cosx))dx=--2I, -2I =int ln(cosxsinx)dx, -->
    Int ln((1/2)sin(2x))dx, int ln(1/2)dx + int ln(sin2x) dx = -I + -I, int -ln(2)dx = -xln2, -2I = -xln2 -I /-I=ln(sin2x)dx/ -I = -xln2 |0,pi/2) --> I = (pi/2)*ln2 = 1,08879...
    2023.02.05. papa

  • @BikoleLege
    @BikoleLege 4 місяці тому +1

    exellent !