USA Nice Olympiad Exponential Equation | Solve for X

Поділитися
Вставка
  • Опубліковано 1 лис 2024

КОМЕНТАРІ • 20

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs Місяць тому +5

    5^x*5^x*5^x=10 x=Log[125,2]+1/3=Log[125,2]+0.3 recurring=(1+Log[5,2])/3=Log[5,Surd[2,3]]+0.3 recurring

    • @Sci-Marvels
      @Sci-Marvels Місяць тому

      Interesting approach! It’s always fascinating to see different methods to solve these kinds of equations. Thanks for sharing your solution!

  • @KUS-2024
    @KUS-2024 Місяць тому +2

    5^(3X)=10
    3X×log(5)=log(10)=1
    X×log(5)=1/3
    X=1/(3×log(5))

  • @abardi2142
    @abardi2142 Місяць тому +2

    x=1/(3*Log5)

  • @knobjjbnlknlkkjbnkjbjblnjblkjn
    @knobjjbnlknlkkjbnkjbjblnjblkjn Місяць тому +1

    10/21 is also right

  • @miracbarsapaydn650
    @miracbarsapaydn650 Місяць тому +1

    X =log(5)[10] / 3

  • @mayaq8324
    @mayaq8324 Місяць тому +2

    Using my calculator I can confirm that 10 = 10

  • @user-wk6je7pi4h
    @user-wk6je7pi4h Місяць тому

    5^1.432=10

  • @ibrahimbaig-ro1tp
    @ibrahimbaig-ro1tp Місяць тому

    x is 0.96/2

  • @its_anonymous490
    @its_anonymous490 Місяць тому

    Put x=2/3 and see the equation satisfy

  • @Mike--K
    @Mike--K Місяць тому

    I must be missing something very important because this did not appear to be a difficult problem. (5^x)( 5^x)(5^x) = 10 can be written as (5 * 5 * 5)^x = 10, or 125^x = 10. Taking the log of both sides gives xlog(125) = log(10). Since log(10) = 1, the equation can be written as xlog(125) = 1. Divide both sides by log(125) and the equation can be written as x = 1/log(125).

    • @balanbalan82
      @balanbalan82 Місяць тому +1

      the answer is coming as 1 not 10

    • @balanbalan82
      @balanbalan82 Місяць тому +1

      i used the cal

    • @Sci-Marvels
      @Sci-Marvels Місяць тому

      You're absolutely correct! Simplifying the equation in this way makes it much more straightforward. It's great to see how different approaches can lead to the same result. Thanks for breaking it down so clearly! 👍

  • @cn_minijacob3046
    @cn_minijacob3046 Місяць тому

    Is this really usa's olympiad math level ?

  • @NEELUSINGH-gn9jg
    @NEELUSINGH-gn9jg Місяць тому +2

    Hello dear sir

  • @TheTinkywinky3
    @TheTinkywinky3 Місяць тому +1

    Olympiad??? Are you kidding? I could solve it in mind, and you don't need therefor over 6 Min.

  • @Anushka2470
    @Anushka2470 Місяць тому

    😂 even 8 standard kid can solve this