L-7 RAG (Retrieval Augmented Generation)

Поділитися
Вставка
  • Опубліковано 20 січ 2025

КОМЕНТАРІ • 72

  • @adaokabuonye723
    @adaokabuonye723 2 дні тому

    Very Informative. Thank you.

  • @hariharavalliappan2811
    @hariharavalliappan2811 5 місяців тому +1

    I'm searching a good content about RAG for a long time, its very useful to understand about RAG process.

  • @gkhan753
    @gkhan753 5 місяців тому

    Clear and to the point . Really like your style of teaching. Learnt quite a bit here. Thank you!!

  • @AkulSamartha
    @AkulSamartha 5 місяців тому

    Super and easy videos to follow. Keep the good work going.

  • @sagarbhamburkar9395
    @sagarbhamburkar9395 4 місяці тому +1

    Very easy and perfect way to explain, thanks mam.
    Please come up with fine tuning, deployment on cloud, how to test llm model's performance kind of videos.
    Your way of explanation is very simple and effective.

  • @saaduddinshaikh5300
    @saaduddinshaikh5300 5 місяців тому

    Arohi mam, your tutorials are really helpful for me as you explain each and every function, line of code and concept, you are doing great great job

  • @aminelongo242
    @aminelongo242 5 місяців тому

    Really good explanation. Thanks Aarohi!

  • @chinnaiahkotadi4702
    @chinnaiahkotadi4702 4 місяці тому

    Really its good explanation so thanks mam and it is very helpful to students

  • @muhammadmujtaba-ai
    @muhammadmujtaba-ai 4 місяці тому +1

    Thank you for a detailed and easy-to-understand tutorial.
    I have a request, please create a tutorial to implement RAG on any LLM and on any document, such as text files and databases. I'll surely do research from my side, but a help from mentor speeds up the learning process.

    • @muhammadmujtaba-ai
      @muhammadmujtaba-ai 4 місяці тому

      I have realized it by now.
      Still, thank you for providing the basics, which helped me understand that part

    • @CodeWithAarohi
      @CodeWithAarohi  4 місяці тому +1

      Sure!

    • @hussaintanwir5105
      @hussaintanwir5105 2 місяці тому

      have you made the requested video​@@CodeWithAarohi ??

  • @princekhunt1
    @princekhunt1 3 місяці тому

    Nice explanation as all time

  • @alexramos587
    @alexramos587 3 місяці тому

    Keep the good work.

  • @dgbits
    @dgbits 5 місяців тому

    Wow Nice training you made our life easy. Please do post tutorials regularly

  • @floatonArt
    @floatonArt 5 місяців тому

    I followed your steps in installation of pytorch and torch vision and open cv yolo v5 etc..success fully I installed opencv2 with cuda support and installed successfully pytorch and torch vision etc but in installation of yolo v5 I got struck at ultralytics then I got know python 3.6 is not compatible with installation of ultralytics. Now I again flashed os into board and I created new virtual environment with python 3.8 now pytorch is not getting installed as my jetpack SDK is 4.5 and I cannot upgrade to 5 as hardware is not supported, but in many articles it is said that ultralytics is important how do I handle this situation 😅

    • @CodeWithAarohi
      @CodeWithAarohi  5 місяців тому

      You can run yolov8 with deepstream on Jetson nano. Try that now :) I have a video on that also

  • @Samtoosoon
    @Samtoosoon 3 місяці тому

    Amazing videos mam

  • @xiaochen-l7c
    @xiaochen-l7c Місяць тому

    very good

  • @nidhisharma302
    @nidhisharma302 Місяць тому

    Hello Aarohi, how did you fetch the url..you didn't explain that part..

  • @soravsingla8782
    @soravsingla8782 3 місяці тому

    Nicely explained

  • @mohammadyahya78
    @mohammadyahya78 5 місяців тому

    Amazing! We need a series playlist from you please.

  • @sangeethag8228
    @sangeethag8228 2 місяці тому

    Thanks for your excellent tutorial, Mam. If possible , can you share some insights to handle hallucination in genAi mam. Thank u.

  • @neuralnetworkpro
    @neuralnetworkpro 5 місяців тому

    thank you for the video . I like your consistency in moving with GenAI and LLM videos . Lots of love and Success Ahead . Can we make any video where input is image and do the RAG. waiting for it.

    • @CodeWithAarohi
      @CodeWithAarohi  5 місяців тому

      Sure, Will cover the requested topic soon.

  • @devavratpro7061
    @devavratpro7061 3 місяці тому

    When we are fetching info from a website, do we need to clean the data as it has many irrelevant words also, or will the model automatically take care of it? Suppose, I am feeding all the pages of a website that is more than 100.....then will it work or need some data cleaning/ pre processing?

  • @Darlingprabhas375
    @Darlingprabhas375 2 місяці тому

    Hi , Can you check your Git repo we are unable to see Basics Rag code file

    • @CodeWithAarohi
      @CodeWithAarohi  2 місяці тому

      github.com/AarohiSingla/Generative_AI/blob/main/L-7/RAG_demo/basics_RAG.ipynb

  • @amalkuttu8274
    @amalkuttu8274 5 місяців тому +1

    Do I need to pay openai to use their api?.

  • @manikd8525
    @manikd8525 5 місяців тому

    Can you please explain about the LLM hyper parameters and how it is helpful to get good results

  • @karthiknangunuri2008
    @karthiknangunuri2008 4 місяці тому

    Hi Aarohi,
    Can you create a video on RAG Implementation on ODA Chatbot where the bot need to interact with the Oracle ADW

  • @anirbansarkar6306
    @anirbansarkar6306 5 місяців тому

    Hi Ma’am, your videos are really helpful. Thank you so much for sharing these contents. Through your videos I quickly get to know the new technology coming in the market. But if possible can you hide the api key and in general any keys you use in your videos?

    • @CodeWithAarohi
      @CodeWithAarohi  5 місяців тому

      Glad my videos are helpful and I really appreciate your feedback about the API keys. Rest assured, the API keys shown in those videos are deleted after making the videos. But Thanks for pointing that out! 🙂

  • @p.logesharavind3528
    @p.logesharavind3528 5 місяців тому

    i had an interview,
    using openai, i have created a chat bot similar like chatgpt,
    im able to exactly answer the input question from the document(data)
    during streamlit, im able to create preview the chatbot, during the each input question the output is not generated fastly, in top right corner their is a option "Running" is previewed then only after 15sec its able to give the answer.
    because of this, im not able to explain the answer and i lost the job

    • @CodeWithAarohi
      @CodeWithAarohi  5 місяців тому

      I'm sorry to hear that your interview didn't go well. Responses delay due to various reasons like - check if you have sufficient resources to run this app. If you're running the demo on a local machine, consider using a machine with a faster CPU or more RAM.

  • @shantilalzanwar8687
    @shantilalzanwar8687 5 місяців тому

    is is RAG just like search key word and provide output ?

    • @CodeWithAarohi
      @CodeWithAarohi  5 місяців тому +1

      RAG works by first finding relevant information from a large database and then using that information to help generate a better and more accurate response to a question or query asked by user. We can say that RAG is like combining a smart search engine with a powerful text generator.

    • @shantilalzanwar8687
      @shantilalzanwar8687 5 місяців тому

      @CodeWithAarohi thanks. Your video showed from website. Can we provide word excel and ppt as input, still can RAG fetch info from those ?

    • @CodeWithAarohi
      @CodeWithAarohi  5 місяців тому +1

      Yes, you can load data from various sources using different data loaders in langchain.

  • @rameespk970
    @rameespk970 2 місяці тому

    Hello Arohi-mam , I loved your teaching, and I am trying it out myself. I have one question
    Which library /steps should i modify if i need to load the contents from a pdf file , instead of URL?
    your response will be highly appreciated !

    • @rameespk970
      @rameespk970 2 місяці тому

      I got the solution
      from langchain_community.document_loaders import PyPDFLoader
      loader = PyPDFLoader("file.pdf")
      data = loader.load()

    • @CodeWithAarohi
      @CodeWithAarohi  2 місяці тому

      Check this: github.com/AarohiSingla/Generative_AI/blob/main/L-8/gemini_rag_demo/basics_RAG_pdf.ipynb

  • @AkulSamartha
    @AkulSamartha 5 місяців тому

    Can you please make a vide on how to add chat history for this RAG

  • @DevShahin-zm8ni
    @DevShahin-zm8ni 4 місяці тому

    mam please upload few real case oriented LLM projects.

  • @kanzkone2008
    @kanzkone2008 3 місяці тому

    Do you think we can replace RAG by NotebookLM?

    • @CodeWithAarohi
      @CodeWithAarohi  3 місяці тому

      It depends - If you want to create detailed text or code responses that pull in information in real time, RAG might be the better choice. But if you need a tool that lets you run code and get explanations interactively, NotebookLM could work better for you.

  • @arnavthakur5409
    @arnavthakur5409 4 місяці тому

    Thanks ma'am

  • @Rits1804-l4r
    @Rits1804-l4r 4 місяці тому

    ma'am plz make the conversational chatbot having previous context too