Red neuronal desde cero con Pytorch (Tutorial)

Поділитися
Вставка
  • Опубліковано 22 гру 2024

КОМЕНТАРІ • 50

  • @jorge1702
    @jorge1702 2 роки тому +2

    Eres un crack bato, de los pocos mexicanos que hacen esto en UA-cam y saben que onda.

    • @AMPTech
      @AMPTech  2 роки тому

      Muchas gracias!!

    • @Harry-37
      @Harry-37 2 місяці тому

      pense que era
      de colombia?

  • @IAVIC
    @IAVIC 2 роки тому +1

    impresionante !!!, muchas gracias.

  • @gabrielparra5562
    @gabrielparra5562 2 роки тому

    Muchas gracias Alex por compartir tu conocimiento. Sin duda útil para asimilar esquemas de operación de esta fascinante especialidad tecnológica.

    • @AMPTech
      @AMPTech  2 роки тому

      Que bueno que te es útil! Muy importante aprender a interactuar y desarrollar con estas tecnologías

  • @cristianmerchan5741
    @cristianmerchan5741 Рік тому

    Que buen video... Super claro .. sería chévere que también lo hicieras con tensorflow y hacer una comparativa... Excelente video .

  • @capablancastyle
    @capablancastyle 2 роки тому +3

    Muchas gracias, explicación muy clara!!!

  • @germanjaro
    @germanjaro 8 місяців тому

    Excelente. Una bala. Muchas gracias por el vídeo.

  • @carlosalejandroguerreromen5586
    @carlosalejandroguerreromen5586 2 роки тому +1

    Excelente video, esperaré el video de redes neuronales convolucionales!!!

    • @AMPTech
      @AMPTech  2 роки тому +1

      Muchas gracias!

  • @thiagoh20
    @thiagoh20 2 роки тому +1

    Me gusta como se ve tu editor de codigo. Un crack 💪🏼

    • @AMPTech
      @AMPTech  2 роки тому +1

      Jaja gracias. Es visual studio code con el tema oscuro, desde que integraron jupyter notebooks es casi lo único que uso.

  • @JUANKATE007
    @JUANKATE007 Місяць тому

    Excelente, una pregunta, si tengo otro dataset, numérico ya normalizado de 13 columnas, de las cuales, la última, es la predicción deseada. Como puedo sustituir la red neuronal para adaptarla al nuevo dataset? Gracias.

  • @sniperdaoud
    @sniperdaoud 2 роки тому +2

    no soy experto en pytorch, pero en 18:45 como puedes hacer backpropagation con el resultado de loss_fn y nunca conectaste loss_fn al modelo, como puede saber a con que modelo trabajar ???

    • @AMPTech
      @AMPTech  2 роки тому +5

      Hola,
      Muy buena pregunta, si, en PyTorch parece que no están vinculados pero por detrás si lo están.
      Cuando corres el cálculo de la gradiente, estos son almacenados en los tensores de la red, dentro de un atributo llamado grad (Lo cual lo vincula al modelo).
      Al instanciar al optimizador lo vinculamos al modelo por medio de models.parameters() así que ya tiene la manera de cambiar eses parámetros para el objeto del modelo.
      Saludos!

    • @sniperdaoud
      @sniperdaoud 2 роки тому +1

      @@AMPTech muchas gracias por la aclaración 🌹🌹

  • @tomaslemus6621
    @tomaslemus6621 Рік тому

    Genial amigo. Graicias!

  • @GABC2007
    @GABC2007 2 роки тому +1

    buenisimo, muchas gracias

    • @AMPTech
      @AMPTech  2 роки тому

      Con gusto, Ariel.

  • @fedegonzal
    @fedegonzal 2 роки тому +3

    Buen video! Muy claro. Me hubiera gustado que explicaras por qué comenzaste con 13 variables de entrada y luego fuiste a 15 y luego a 8. Entiendo que es un criterio subjetivo, pero sería súper útil conocer las razones por las que elegiste esos valores. Gracias!

    • @AMPTech
      @AMPTech  2 роки тому +1

      Lo considerare para un futuro video, es un buen punto. Como mencionas, no hay una regla como tal pero si hay ciertos patrones o cosas a hacer y evitar. En este caso fue algo arbitrario, intentas no poner tampoco miles de neuronas o reducir muchas entradas a muy pocas neuronas, justo las lineas que están comentadas es para que se puedan hacer varias pruebas y se vaya generando un poco esa intuición.
      Saludos!

  • @mauriciogarza3966
    @mauriciogarza3966 2 роки тому +1

    Excelente video!

  • @gastonmuzas9590
    @gastonmuzas9590 2 роки тому +1

    Muy buen tutorial!

    • @AMPTech
      @AMPTech  2 роки тому

      Muchas gracias! Se vienen más en el futuro.

  • @issachernandez6856
    @issachernandez6856 2 роки тому +1

    sabes explicar muy bien

    • @AMPTech
      @AMPTech  2 роки тому +2

      Gracias! Espero que este tipo de videos a detalle ayuden!

  • @antoniosemperem
    @antoniosemperem Рік тому

    Sí quiero hacer una red para imágenes oftalmológicas, por donde empezarías desee tu punto de vista?

  • @navi_vlogs
    @navi_vlogs 2 роки тому

    Que buen video, enseñas rápido y muy bien. Suerte con tu canal.

    • @AMPTech
      @AMPTech  2 роки тому

      Muchas gracias!

  • @Salomonkein1992
    @Salomonkein1992 Рік тому

    Genial video ¿hay mucha diferencia si las bases de datos pesan en total 2 pentabytes?

  • @daniwarindie
    @daniwarindie Рік тому +1

    Eres como un chatgpt humano , gracias 🙂

  • @amadodejesusvazquezacuna5644
    @amadodejesusvazquezacuna5644 2 роки тому +2

    Excelente explicación!! Estaría genial que también hagas un vídeo sobre como crear redes CNN en Pytorch de forma similar como lo hiciste con Tensorflow en su momento.

    • @AMPTech
      @AMPTech  2 роки тому +1

      Hola Armando, anotado entre las ideas para futuros videos. Saludos!

  • @yormanlopez8553
    @yormanlopez8553 2 роки тому +1

    Uff me. Gusto mucho.

  • @AdrianFernandezFazio
    @AdrianFernandezFazio 2 роки тому +1

    Muy bueno tu vídeo. Si no me equivoco ser podría usar tensorflow para lo mismo. Cuál sería el criterio para optar por pytorch o tensorflow? Saludos desde Argentina

    • @AMPTech
      @AMPTech  2 роки тому +2

      Si cualquier cosa que hagas en pytorch se puede en tf. Tf lo he visto mas para modelos a grande escala y pytorch para investigación, pero la verdad es que ambos son bastante completos.

  • @2299alexander
    @2299alexander Рік тому

    Hola, gran video, una pregunta:
    terminada la red , entrenada y testeada con los datos de test... como pruebo la red con una fila de datos que no esté en el conjunto de test ni tampoco en el conjunto de train ? estoy empezando y no comprendo esa parte. saludos cordiales de chile.

    • @bogRivera
      @bogRivera Рік тому

      Tienes que agregar nuevos valores a predictores. Por ejemplo si quieres saber la predicción de cuánto costará el litro de petróleo y tus características son: [transporte, tiempo de extracción,época de extracción] entonces generarás nuevos valores con esas características específicas.
      Ejemplo:
      train
      labels: [transporte, tiempo de extracción,época de extracción]
      values: [10,22.5,4]
      Tu deberás generar un vector con nuevos valores basados en esos labels, por ejemplo:
      [34,25,1]
      Si tu metes esos valores en tu red la predicción se hará con base en lo que ya entrenaste.
      Espero haberme explicado.

  • @giovannijunco28
    @giovannijunco28 2 роки тому

    Excelente

  • @Felipe3DGlobal
    @Felipe3DGlobal Рік тому

    Hola qué tal.
    Muy interesante el vídeo estos proyectos que realizas los puedo correr en una odroid xu3 lite y en una Nvidia jetson nano de 2gb?

    • @AMPTech
      @AMPTech  Рік тому +1

      En la jetson nano si puedes correr varias redes. En el Odroid no estoy completamente seguro, imagino que si se puede correr pero con una velocidad de inferencia algo lenta.

    • @Felipe3DGlobal
      @Felipe3DGlobal Рік тому

      @@AMPTech muchas gracias, excelentes videos

  • @ivannavas3377
    @ivannavas3377 Рік тому

    Puedo hacer muchas redes neuronales en la i.a para que sea más inteligente ?

  • @yormanlopez8553
    @yormanlopez8553 2 роки тому +1

    Hola amigo hace mucho tiempo te sigo. Sos increíble. Tengo una duda y me gustaría porfavor me ayudarás lo necesito. Me interesó siempre el Deep learning por lo cual empezé a ver teoría sobre perceptrones redes multicapa funciones de activación etc. Muy bien la teoría. Cuando quise pasar a la práctica con una API de alto nivel empezé con fashion mnist. Ahora quiero seguir practicando con más datasets. Aquí mi duda. No se donde encontrar datasets para practicar mis redes neuronales. Además si los encontrará simplemente a pesar de tener conocimientos sobre la teoría en si del Deep learning la parte de los datos me confunde. Porque no sé cómo pasarle datos o alimentar a una red neuronal. 😔 Espero porfavor me ayudes

    • @AMPTech
      @AMPTech  2 роки тому

      Los datasets de Kaggle te pueden funcionar mucho para practicar
      www.kaggle.com/datasets
      Sobre alimentar la data a la red neuronal, eso depende mucho para caso de uso.
      Saludos

  • @zwwx2142
    @zwwx2142 Рік тому

    Soy nuevo por acá alguien me puede decir cuánto se puede hacer con este lenguaje no lo conocía se ve interesante???🧐🤔

  • @pacomermela6497
    @pacomermela6497 2 роки тому

    Uff estoy acostumbrado a Keras y me resulta muy tedioso diseñar la arquitectura con Pytorch

    • @AMPTech
      @AMPTech  2 роки тому +1

      No te preocupes. Es similar pytorch en su modo sequential. Y otras partes como el armado de la clase y demás puedes reutilizar la estructura general de proyectos pasados. Si entiendes como funciona una red neuronal lo puedes implementar sin problema. Éxito!