LangChain Tutorial: Building Innovative LLM Powered Applications End-to-End

Поділитися
Вставка
  • Опубліковано 29 січ 2025

КОМЕНТАРІ • 10

  • @georges7298
    @georges7298 3 місяці тому

    very helpful! thanks.

  • @swetasharma8467
    @swetasharma8467 Рік тому

    Very well explained 👏 Thanks for insightful content!

  • @Professor-dr7fc
    @Professor-dr7fc 3 місяці тому

    Why he did not use an API key for Vertex AI?
    He mentioned previously that to use the Propertietory Foundation Model, we have to use an API key.

  • @KumR
    @KumR Рік тому

    Can we connect langchain to different LLMs in same instance and use data from one LLM into another LLM ?

    • @Analyticsvidhya
      @Analyticsvidhya  11 місяців тому

      Yes, absolutely! LangChain is specifically designed to connect different LLMs and leverage their outputs. You can:
      👉 Chain LLMs sequentially: Feed the output of one LLM as input to another, creating a multi-step workflow.
      👉 Use multiple LLMs in parallel: Pass different parts of the data to different LLMs for specialized tasks.
      👉 Combine LLM outputs: Integrate results from various LLMs for more comprehensive answers.
      LangChain provides multiple built-in tools and supports various LLM providers for flexible use. Check out the documentation for specific examples and implementation details!

  • @myself4024
    @myself4024 Рік тому

    It will be helpful to get the notebook

    • @Analyticsvidhya
      @Analyticsvidhya  Рік тому

      Dear learner, we suggest you to implement the notebook as per the discussion in the video.

  • @Professor-dr7fc
    @Professor-dr7fc 3 місяці тому

    He missed the API part in Vertext AI.
    So confusing...

  • @9618072175
    @9618072175 Рік тому

    Well Explained . ThankYou