Equation of Powers

Поділитися
Вставка
  • Опубліковано 16 лис 2024

КОМЕНТАРІ • 14

  • @digxx
    @digxx 2 роки тому +4

    You can also consider the prime factorization: a^{5a}=b^b => (p1^a1 * ... * pn^an)^{5a}=(p1^b1 * ... * pn^bn)^b, i.e. ak*5a=bk*b for k=1,...,n. This can be written as bk/ak=5a/b. Now, if bk/ak=5a/b 1, i.e. a|b => b=n*a. Then bk/ak=5/n>1, so n=1,2,3,4. Finally (na)^{na)=a^{5a} => n^n*a^n = a^5 and checking n=1,2,3,4 gives solutions only for n=1 and n=4.

    • @leif1075
      @leif1075 2 роки тому

      I'm sorry but I don't think thus notation is at all clear..

    • @digxx
      @digxx 2 роки тому +1

      @@leif1075 What notation? Can you specify?

    • @arpangoswami5760
      @arpangoswami5760 2 роки тому

      @@digxx I also did it in same way. it becomes lot more easier

  • @schweinmachtbree1013
    @schweinmachtbree1013 2 роки тому

    3:07 you don't need both A and B to be >1 for the left side to be really a fraction, you just need B>1 (since A and B are coprime). Therefore you only need the two cases B>1 and B=1 instead of your three cases, which is reflected by the answer (a, b) = (1, 1) appearing twice in your solution.

  • @beautifulworld6163
    @beautifulworld6163 2 роки тому

    Good solution

  • @Dr.1.
    @Dr.1. 2 роки тому +15

    the audio volume is too low

  • @tianqilong8366
    @tianqilong8366 2 роки тому +1

    brilliant solution!🔥🔥🔥

  • @bait6652
    @bait6652 2 роки тому +1

    surprised how much forgotten about power rules. Thought noting that a,b are powers of the same root would have been a more efficient way of proving over the GCD.method. Boy was i wrong!!! however less cases to check. Looks like the most efficient proof is to recognize b=n*a where a,b,n are powers of same root

  • @arnavdas3139
    @arnavdas3139 2 роки тому +1

    Mahn excellent solution but the your voice sound is really low

  • @protoroxsinha2451
    @protoroxsinha2451 2 роки тому

    Diophantine equations OMG