302.7B: Polynomials - A Change in Strategy

Поділитися
Вставка
  • Опубліковано 22 гру 2024

КОМЕНТАРІ • 8

  • @PunmasterSTP
    @PunmasterSTP 4 місяці тому

    I absolutely appreciated the humor in this video! 🤣
    On a side note, and while continuing to acknowledge how good these videos are, I'd highly suggest double-checking the examples. Unfortunately I think the errors can get to the point where they create genuine confusion.

  • @paulmatthewduffy
    @paulmatthewduffy 12 років тому +2

    Hi Matthew, You have an error in the polynomial you present at around the 2 minute mark. (t+1)(t-2) is the factorisation of t^2 - t - 2, not +2.
    Thank you for these videos. I am currently studying group theory in my undergraduate course, and your explanations are much better than the texts I've been using.
    Keep up the good work,
    Paul

  • @UlrichDrive
    @UlrichDrive 8 років тому +2

    (t+1)(t-2) = t^2 - t - 2
    t = 1/2 + sqrt(7)i/2 and 1/2 - sqrt(7)i/2 are the roots to t^2 -t +2 = 0
    I am enjoying this series on Galois theory.

  • @gene546
    @gene546 11 років тому +2

    how you factor t^2-t+2?

    • @rubberubertuber
      @rubberubertuber 2 роки тому +1

      Complete the square. Roots are complex.

    • @PunmasterSTP
      @PunmasterSTP 4 місяці тому

      For quadratics, you can always fall back to the quadratic formula. Then once you have the roots, the original polynomial is just the product (x - root1) * (x - root2).

  • @RubenHogenhout
    @RubenHogenhout 10 років тому

    You can also factor x^5 + x+1 = 0 (x^2 + x+1)(x^3 + -x^2 + 1) = 0 and is thus solvable. Some Quintics are. But how can you spot that?

  • @RubenHogenhout
    @RubenHogenhout 10 років тому

    That is easy. (x-alfa)(x-bèta)(x-gamma)(x-delta) = 0 then multipy everything out.
    You get (x-a)(x-b)(x-c)(x-d) = 0
    x^4+(-a-b-c-d)x^3+(ab+ac+ad+bc+bd+cd)x^2+(-bcd-acd-abd-abc)x +abcd = 0then the sum of the roots are for example 0 if there is no X^3 termif you have x^4+(-4)x^3+(8)x^2+(-12)x +18 = 0then
    -a-b-c-d = -4 ab+ac+ad+bc+bd+cd = 8
    -bcd-acd-abd-abc = =12 and abcd = 18