You can't bounce a ball under a table

Поділитися
Вставка
  • Опубліковано 29 лис 2023
  • The first 100 people to use code SCIENCE at the link below will get 60% off of Incogni: incogni.com/science
    Thanks to Hugh Hunt for the idea for this video.
    If you try to pass a bouncy ball under a table, if it hits the underside of the table it will just bounce back out the way it came.
    Here's the golf ball paradox video: • The Golf Ball Paradox
    Here's the turntable paradox video: • The Turntable Paradox
    Here's my discord server: / discord
    Here's Patrick's simulations: www.glowscript.org/#/user/Pat...
    Here's the video Eyy Tee sent me of the ball in a square box: • SUPER BALL RETURNS FRO...
    You can buy my books here:
    stevemould.com/books
    You can support me on Patreon and get access to the exclusive Discord:
    / stevemould
    just like these amazing people:
    Alex Hackman
    Glenn Sugden
    Tj Steyn
    Pavel Dubov
    Lizzy and Jack
    Jeremy Cole
    Brendan Williams
    Frank Hereford
    Lukas Biewald
    Damien Szerszinski
    Marshall Fitzpatrick
    Heather Liu
    Grant Hay
    John Zelinka
    Paul Warelis
    Matthew Cocke
    Nathan Blubaugh
    Twitter: / moulds
    Instagram: / stevemouldscience
    Facebook: / stevemouldscience
    Buy nerdy maths things: mathsgear.co.uk
  • Наука та технологія

КОМЕНТАРІ • 2,4 тис.

  • @SteveMould
    @SteveMould  5 місяців тому +583

    Does it make more sense now? Maybe. idk
    The sponsor is Incogni: The first 100 people to use code SCIENCE at the link below will get 60% off: incogni.com/science

    • @ThereIsNoSp00n
      @ThereIsNoSp00n 5 місяців тому +10

      You could reduce friction between ball and surface by applying a lubricant or talcum powder, thus reducing or even cancelling the effect.

    • @EquaTechnologies
      @EquaTechnologies 5 місяців тому +1

      i will stay private with this, yah?

    • @oznerolk
      @oznerolk 5 місяців тому

      it reminds me of Michael Moschen's "Energy" routine!

    • @rogerrabt
      @rogerrabt 5 місяців тому +2

      Let's try with a football/rugby ball?
      edit: Also what happens in 3 sides?

    • @swannee69
      @swannee69 5 місяців тому +1

      pool and snooker players understand this principle, the spin reverse the direction when it hits a 2nd cushion

  • @JanStrojil
    @JanStrojil 5 місяців тому +11242

    Now explain why the children’s bouncy ball always gets stuck under the sofa and never bounces out.

    • @bigboi1004
      @bigboi1004 5 місяців тому +731

      It likes it under there

    • @soccerkenshin
      @soccerkenshin 5 місяців тому +1045

      The sofa is just a low table. Otherwise why would there be so many crumbs in the cushions?

    • @priapulida
      @priapulida 5 місяців тому +153

      osmosis

    • @EvanPederson
      @EvanPederson 5 місяців тому +96

      Gremlins

    • @xplosiv3z799
      @xplosiv3z799 5 місяців тому +69

      Electrolysis?

  • @Vlow52
    @Vlow52 5 місяців тому +1295

    That’s also related to the “impossible” shots in snooker and other billiard games. When cue ball suddenly reverses its direction due to the spin gripping the cloth or cushion.

    • @cage989
      @cage989 5 місяців тому +16

      this is more like a ball coming off the rail with sidespin

    • @Vlow52
      @Vlow52 5 місяців тому +33

      @@cage989 yes, that’s what I’m talking about. If you inspect a masse shots with a lot of spin, it’s essentially the same forces of friction that reverses the direction of the ball after gliding on a flat surface. It’s probably possible to replicated it in 3d by using slippery or magnetic surfaces that ball bounces off, but essentially you can see these effects in games like baseball and golf, when spinner ball runs on curve by catching air molecules.

    • @MikkoRantalainen
      @MikkoRantalainen 5 місяців тому +44

      The "impossible" snooker shots also use the fact that there's a difference between static friction and sliding friction. And because change between those happen pretty abrupt when force remaining in the ball decreases (thanks to sliding friction), the ball seems to suddenly change behavior in the middle of the shot which gives the "impossible" appearance.

    • @cage989
      @cage989 5 місяців тому

      ​@@Vlow52 the cueball slides along the surface before coming back with backspin, it's not the same as a ball changing direction immediately when coming off a rail with side spin

    • @trajectoryunown
      @trajectoryunown 5 місяців тому

      Does that include making the ball jump as well?

  • @KEKW-lc4xi
    @KEKW-lc4xi 3 місяці тому +43

    my procrastination game is strong today.

  • @ClearAlera
    @ClearAlera 5 місяців тому +327

    I play racquetball, which is basically a bouncy ball in a cube like this. I remember when I was first learning, the ball kept bouncing off surfaces in ways that seemed more extreme and counter intuitive. It's second nature now, but this video was great at explaining what my brain had trouble with all those years ago!

    • @cengland0
      @cengland0 4 місяці тому +8

      Came here to say this. This is the principle of my Z shot where I can make the ball go parallel to the back wall leaving only a couple inches between the ball and the back wall. If you play with an old ball or moist walls, the ball doesn't spin right and doesn't "Z" properly.

  • @holaferfi
    @holaferfi 5 місяців тому +606

    I love how well you keyed out your hand on that slo-mo shot, what an editor!

    • @SteveMould
      @SteveMould  5 місяців тому +177

      Some recognition at last. Thank you

    • @cryptfire3158
      @cryptfire3158 5 місяців тому +6

      i saw a blur.. had no idea it was his hand.

    • @chocolateblocks
      @chocolateblocks 5 місяців тому +6

      He keyed out his hand? Wow! I never noticed it! It was simply too good.

    • @freeEnd_
      @freeEnd_ 5 місяців тому

      Duh, he never keyed out his hand, its just a camera that records at 100000000000000 fps, so he just threw the ball and recorded it with that camera. He sayed that he keyed out his hand because he didn't want us to know that he has access to governments secret objects. Simple as that, he is the president of US

    • @PinkeySuavo
      @PinkeySuavo 5 місяців тому +3

      which second is that?
      oh nvm it was a joke xD

  • @Lombardio
    @Lombardio 5 місяців тому +341

    "Low-poly cylinder" is my new favorite name for convex regular polygons.
    You brought up friction at the collisions, but I kept wondering if you were going to address deformation of the ball at each bounce. My initial thought is that the ball deforming when it hits a surface mostly just increases the surface area for friction to be applied, but I don't know enough about bouncy ball physics to decide if it is a crucial part of the dynamics or not.

    • @Shademastermcc
      @Shademastermcc 5 місяців тому +11

      Everything is crucial if you're being precise enough.

    • @ewthmatth
      @ewthmatth 5 місяців тому +5

      You're definitely misusing the phrase "convex regular polygon" here.

    • @Lombardio
      @Lombardio 5 місяців тому +2

      ​@@ewthmatthYou're right. Convex regular polygon prism?

    • @eben7248
      @eben7248 5 місяців тому +2

      @@Lombardio Just "prism" would do fine.

    • @stevenculver7228
      @stevenculver7228 5 місяців тому

      Deformation is crucial for two reasons: (1) forces need area to transfer between objects (i.e. stress), and (2) the total linear impulse is a function of the friction force and the duration of the impulse. If the ball was too stiff, the friction force wouldn't have enough time to change the linear momentum enough to bounce the ball out.

  • @jasonspence
    @jasonspence 5 місяців тому +965

    Before getting caught up in the many-sides version, I think it's important to mention that part of the reason it's hard to bounce a ball under a table is that the rotation robs some of the horizontal velocity, making the ball hit the underside of the table much earlier than you think it should. You have to bounce the ball considerably farther away than half way under the table for it to come out the other side.

    • @balares
      @balares 5 місяців тому +17

      Basically what i was thinking, if you made sure it bounced after the middle of the table (maybe with an extra outwards rotation) it would most likely just pass through.

    • @Skank_and_Gutterboy
      @Skank_and_Gutterboy 5 місяців тому +8

      Yep. Where I was caught flat-footed is how often it does this effortlessly (I actually tried it). I figured that it would nearly always bounce under the table and across the room unless you put some back-spin on the ball. Nope!

    • @luminescentlion
      @luminescentlion 5 місяців тому +15

      I think the implication was that the ball would hit the bottom and top at least once.

    • @luminescentlion
      @luminescentlion 5 місяців тому +18

      ​@@repentandbelieveinJesusChrist1
      “Beware of practicing your righteousness before other people in order to be seen by them, for then you will have no reward from your Father who is in heaven."
      Matthew 6:1

    • @Skank_and_Gutterboy
      @Skank_and_Gutterboy 5 місяців тому +12

      @@repentandbelieveinJesusChrist1
      🎶He's got the whole world,
      In his ass...🎶

  • @Thonga5
    @Thonga5 5 місяців тому +5

    now explain why bouncy balls are so tasty and why i feel ill

  • @aettic
    @aettic 5 місяців тому +826

    Steve, you are one of the best science communicators I've ever seen. So glad that you make these videos. Your kindness and endless curiosity are greatly appreciated.

    • @huuuuuuuuuuuuuuuuuuuuuuuuuuuhn
      @huuuuuuuuuuuuuuuuuuuuuuuuuuuhn 5 місяців тому +5

      seriously one of the few channels where whenever I see a video being recommended I cannot resist. It also never feels like a waste of time watching them

    • @jacobshirley3457
      @jacobshirley3457 5 місяців тому +2

      I'd say Steve Mould and ScienceClic are equally good at converting complex topics into something intuitive.

    • @me0101001000
      @me0101001000 5 місяців тому +6

      What I appreciate is that he communicates things in a manner which someone with no background in science can follow, but then an expert can also appreciate the content as well. I'm an aspiring professor of engineering, and Steve's delivery is something I've been paying close attention to so I can be a better teacher.

    • @BloopTube
      @BloopTube 5 місяців тому +2

      He nails it on a level that only people like the curiosity show and Bill nye have matched,

    • @anearforbaby
      @anearforbaby 5 місяців тому

      Absolutely true. I have been really disappointed by some other channels losing sight of their purpose, but everything I've seen from here remains focused and thoughtful.

  • @ChrisTooley
    @ChrisTooley 5 місяців тому +378

    I like that you use props like a book and a box - it shows people that they can explore physics with the stuff they've already got in their house

    • @ak47adultswim
      @ak47adultswim 5 місяців тому +14

      physics is everywhere and its fucking sick

    • @tenv
      @tenv 5 місяців тому +11

      Look at this guy, bragging about his books and boxes

    • @ThatOpalGuy
      @ThatOpalGuy 5 місяців тому +4

      So that scanning electron microscope I just bought on Amazon was a waste of cash?

    • @ak47adultswim
      @ak47adultswim 5 місяців тому +3

      @@ThatOpalGuy nah man thats a certified pimp move my guy

    • @adamcetinkent
      @adamcetinkent 5 місяців тому +3

      And what a book, eh?

  • @TheBugkillah
    @TheBugkillah 4 місяці тому +5

    My three year nephew asked why the bouncy ball bounces so funny. I made him watch this video. He now calls me “Uncle Meany”.

  • @HunniebeeGames
    @HunniebeeGames 4 місяці тому +15

    my cat really liked this video

  • @flyingdev
    @flyingdev 5 місяців тому +374

    I bet if you did this demonstration with a ball covered in different coloured spots you'd get a nice visual indication of the change in rotational axis after each collision. The various spots would move more or less depending on how close to the axis they are and after a bounce a different spot would stop moving

    • @firytwig
      @firytwig 5 місяців тому +43

      That would help immensely with the animated example since you really can’t see the spin because there’s nothing to track on the surface

    • @dolphin64575
      @dolphin64575 5 місяців тому

      I'm fairly certain soccer ball design on bouncy balls exist...

    • @nicholasbyram296
      @nicholasbyram296 5 місяців тому +6

      Zigzag stripes is best for viewing rotation on a sphere.

    • @ThatOpalGuy
      @ThatOpalGuy 5 місяців тому +1

      ​@@nicholasbyram296I was also thinking stripes. Doing the experiment with all 3 designs would be fun.

    • @alexanderdickens2517
      @alexanderdickens2517 5 днів тому

      Indeed, in table tennis there are balls made of two different colors to more easily teach students spin

  • @BenRHarsh
    @BenRHarsh 5 місяців тому +931

    I just want to say, that shot where you show the ball spinning and floating slowly through the air was absolutely brilliant. I still have no idea how you pulled it off.
    I sat here for nearly 3 minutes (maybe like 2 minutes and 46 seconds?) trying to wrap my brain around it and couldn't figure it out! Bravo.

    • @koriko88
      @koriko88 5 місяців тому +22

      You just need a high-speed camera and someone to throw the ball in a few times until you get the shot you want.

    • @ta1708
      @ta1708 5 місяців тому

      ​@@koriko88lol

    • @Oscar-yk6ww
      @Oscar-yk6ww 5 місяців тому +55

      @@koriko88it’s a joke.

    • @IsStillVicarious
      @IsStillVicarious 5 місяців тому +123

      I think he might have keyed his hand out or something? I'm not sure, but whatever he did makes it such a cool shot.

    • @selimvergili7001
      @selimvergili7001 5 місяців тому +4

      which shot exactly?

  • @Songfugel
    @Songfugel 5 місяців тому +83

    This is so simple and logical, but I never even stopped to consider this might be happening when you throw a ball to bounce on several surfaces. Would be nice to see a similar experiment with a gyro-type of bouncy ball that tries to eliminate this change in spin

    • @bluesight_
      @bluesight_ 4 місяці тому +10

      one could maybe apply lubricant to the ball

    • @pzsn5075
      @pzsn5075 4 місяці тому

      ​@@bluesight_❤

  • @sqarfuls8649
    @sqarfuls8649 5 місяців тому +2

    Incredible video! I remember the golf ball video ages ago. While your communication skills really carry your conveyance of fairly complex ideas in an intuitive and digestible manner, this video was the key to understanding that video fully. Once I "got" this video, it instantly allowed me to understand your previous. Excellent work, as always! :)

  • @MrKyle700
    @MrKyle700 5 місяців тому +322

    Table Tennis, once you are past the "basement" level, is almost entirely built around this phenomonen. You can pretty easily learn how to bounce a table tennis ball back over the net using the spin alone. the idea that the collision changes the spin is essential to master. super cool video! i bet you could expand this by like filming the spin of a ping pong ball between highly skilled players

    • @TraumaER
      @TraumaER 5 місяців тому +7

      Mind blown

    • @rcbuggies57
      @rcbuggies57 5 місяців тому +17

      I was about to say, this is completely expected. We hit counter topspin balls with our rackets basically horizontal and the ball basically goes back on the exact same arc despite the angle of contact dictating the ball should go the complete opposite direction.

    • @RavenMobile
      @RavenMobile 4 місяці тому

      Interesting.

    • @auckwads8169
      @auckwads8169 4 місяці тому +1

      Funby i woukd say a tt ball does the opposite. Back spin serve is back spin firdt bounce server side and back spin still on subsequent bounces due to lack of friction. Long pips reverse the spin due to lack of friction and a direction change. counter looping uses the principle in this vid as your using grippy rubber

    • @-danR
      @-danR 4 місяці тому

      As soon as I saw this video, it was the first thing that came to mind, having played over half a century ago with the particularly grippy, even tacky, new Butterfly surface. (I'm avoiding naming specific products).
      It was the most natural thing to be counterdriving almost directly forward with a blade that was almost parallel to the floor into a topspun ball traveling directly horizontally at the top of its arc, if that incoming ball had a high enough bounce.

  • @TimeBucks
    @TimeBucks 5 місяців тому +190

    Thanks for the awesome content!

  • @sneakmore
    @sneakmore 5 місяців тому +31

    its pretty amazing how much you can learn from watching things in slow motion. like you can say it to me and explain it super well but showing it to me in slow motion I actually can rap my head around the ball rotation and the effects that has on each bounce. played quite a bit of 8-ball in my day and I think that was my biggest hurdle was the massive difference in friction

  • @kikamonju
    @kikamonju 4 місяці тому +1

    I appreciate how much info you added that isn't just answering the prompt of the title.
    Also taking a limit as teh number of side approaches infinity is a cleaver way to figure out the relation between the under table bounce and the golf ball paradox.

  • @Moingboy
    @Moingboy 5 місяців тому +106

    I would love to see a practical follow-up about putting an initial spin on the bouncy ball so that it continues out the other side of the table.

    • @u1zha
      @u1zha 5 місяців тому +3

      Is there a way to do that? The initial spin would just make the returning force (when it hits the table top) stronger. Unless you spin it so hard that it misses the table top already after the first bounce.

    • @Aislinsweetdreams
      @Aislinsweetdreams 5 місяців тому +5

      ​@@u1zhaI've repeated the experiment with different balls, and got mixed results

    • @KonstantinUb
      @KonstantinUb 5 місяців тому

      I also really want to know if this works

    • @dielaughing73
      @dielaughing73 5 місяців тому +5

      ​@@tafazzi-on-discordthe high friction of the ball against most surfaces is the reason for all this behaviour. I'm halfway into the video and I'm a bit surprised he hasn't mentioned that yet

    • @gonelucid
      @gonelucid 5 місяців тому +1

      Or just not bouncing it so hard. I feel like all these commenters are too wrapped up in science and havnt played any games or sports..

  • @silviavalentine3812
    @silviavalentine3812 5 місяців тому +78

    The part where you're moving the ball in slow motion in 3:00 just made me smile. I can just see the dedication in trying to show everyone how the dynamics work. 😊

    • @Galactic_fart_sniffer
      @Galactic_fart_sniffer 5 місяців тому

      But wouldn't that be wrong? The spin increases the angle of motion thus there is angular momentum and newtons third law states there is an equal opposite reaction. Idk everything so please Correct me if im wrong

  • @dbsmash2
    @dbsmash2 5 місяців тому +2

    Steve, I so appreciate how you can break something down to make it intuitive! Thank you for the service you provide, which is entertaining, while making something really cool makes sense to people :)

  • @brianhartling7767
    @brianhartling7767 5 місяців тому +38

    The variables like the materials of the table, floor, and ball are key. If you have something like a ping pong ball and a surface that is slick, because you are reducing the contact friction, you will likely overcome this.

    • @takuid
      @takuid 3 місяці тому +7

      Such a generalizing title, almost click bait. First time seeing the channel and not gonna stick around, no pun intended....

    • @alexanderdickens2517
      @alexanderdickens2517 5 днів тому

      Ping pong is interesting because you’re right: on a table, it does not change spin due to low angle of incidence. However, once it hits the racket, the effect in this video is almost the entire game. The ball is gripped by the paddle’s high-friction surface, and shoots back spinning in the opposite rotation.

  • @BrettDalton
    @BrettDalton 5 місяців тому +119

    Interesting observation I had in that demo was it felt like the change of direction was happening on odd number faces. Wonder if it's conincide or there is some maths there. Would love to see the experiment with 3 faces and 5 faces.

    • @Martian8
      @Martian8 5 місяців тому +4

      My guess would be that each tube has a consistent and particular face that causes the change of direction. For the square it was the third face, for the octagon it actually looks like it’s the fourth face (but it’s hard to tell - it might be the third one).
      Certainly, for the first (2D) example it was the second face
      I imagine the designated face will probably be the one that corresponds with the (7*0.5)/2 oscillations in some way.
      My guess is that in order to complete a full vertical oscillation, you must complete (7^0.5)/2 horizontal oscillations. And so if you complete 1/4 of a vertical oscillation, i.e. entry to inflection, you complete (7^0.5)/8 horizontal oscillations.
      That comes out to about 0.331.
      So the ball will have to travel at least 33.1% of the way round before changing directions.
      For a square, the first face to be more than 33.1% of the way is the third face. For an octagon, it’s the fourth face. For the 2D example, it’s the second face.

  • @mrWade101
    @mrWade101 5 місяців тому +205

    As someone who plays table tennis, this is very intuitive but incredible nonetheless.

    • @lanzer22
      @lanzer22 5 місяців тому +2

      Exactly what I was thinking. Receiving a top spin always makes the ball want to bounce up, etc.

    • @martinda7446
      @martinda7446 5 місяців тому +4

      Try it with a bouncy ball... You will do some ''impossible'' shots. I was wondering about the extreme lightweight smooth ping pong ball... I bet that will bounce under a table.

    • @PajakTheBlind
      @PajakTheBlind 5 місяців тому +1

      yeah, although this is somewhat "reversed" and "amplified" - it's the ball that is tacky - not the surfaces and due to higher inertia of the ball it does not die down as fast as table tennis ball

  • @mike1024.
    @mike1024. 5 місяців тому +2

    I've watched several of your videos related to fun objects that you've made transparent, but I never realized how much physics you also do on your channel.

  • @Cierbhal
    @Cierbhal 5 місяців тому

    Steve, you're soo good at teaching. I appreciate this channel a lot.

  • @Jon-cw8bb
    @Jon-cw8bb 5 місяців тому +7

    This makes the cylindre + ball so much more intuitive. I found the previous video hard to really grasp but now it seems obvious!
    This is really amazing stuff

  • @dragunityx12
    @dragunityx12 4 місяці тому +4

    Gyro Zeppelli and Johnny Joestar be like:

  • @1234jhanson
    @1234jhanson 4 місяці тому

    Great video. I always encourage my students to subscribe to your channel. Brilliant

  • @ExplodingDarth
    @ExplodingDarth 5 місяців тому +34

    This made it so much easier to understand, specifically breaking down the table underside turning around and the square model, I absolutely love this!

  • @XxS4NN4SxX
    @XxS4NN4SxX 5 місяців тому +26

    What I love the most about this kind of videos is that they are no longer just science communication, they are also straight up science.

  • @jinsong6940
    @jinsong6940 4 місяці тому

    Wow I remember watching your first video on the cyclinder and not quite being satisfied with my understanding of the physics but it totally makes sense when it's simplified down like this. I'm amazed.

  • @jerrylive365
    @jerrylive365 Місяць тому

    Your videos are always informative and entertaining. Thank you!

  • @sukira_
    @sukira_ 5 місяців тому +9

    Bouncy balls have a PhD in hide and seek. Prove me wrong.

  • @jkc491
    @jkc491 5 місяців тому +38

    Not sure how or if this applies (haven't watched the original golf ball paradox), but this reminds me of missing golf putts and basketballs touching the entirety of a rim but not scoring. awesome video! keep up the good work.

    • @sventeunissen4321
      @sventeunissen4321 5 місяців тому +5

      That is in fact the motivation for the original golf ball paradox! And (obviously) where it got its name.

    • @johnnyfrankenstein0123
      @johnnyfrankenstein0123 5 місяців тому +3

      Every time I miss I'm gonna shout golf ball paradox

  • @ohvizn6119
    @ohvizn6119 5 місяців тому

    Ive always noticed and loved this effect when i was younger its nice to see a video on it

  • @canbakr5602
    @canbakr5602 4 місяці тому

    One of the best youtube channel of all time. Love you Steve!

  • @LampDoesVideogame
    @LampDoesVideogame 5 місяців тому +3

    Your slo-mo at 1:05 is enough to see what's happening, to me.
    Ball's going a direction, which can be represented by down and right, ball hits the floor which transfers some of the forward momentum into rotational momentum, ball hits the ceiling transferring all that rotational momentum backward, and spinning it the other way, and then since it's spinning the same way it's going when it hits the floor again, it continues coming back.
    That's cool.

  • @archaeologistify
    @archaeologistify 5 місяців тому +22

    This topic is just far enough beyond intuition that it is fascinating to watch.

  • @Dan-hs8lb
    @Dan-hs8lb 4 місяці тому

    this channel is really fantastic - what an amazing demonstration of thoughtful science

  • @sandoncrowder7839
    @sandoncrowder7839 4 місяці тому +9

    An effect I noticed years ago with a basketball is that if you spin it and bounce it, it will come up spinning the other way. I never put more thought into it but it's cool to see the changes that a little spin can make.

    • @wayamy27narf
      @wayamy27narf Місяць тому

      I thought about basketball, too. This puts a better perspective on why the ball spins out of the rim so much.

  • @Trepanation21
    @Trepanation21 5 місяців тому +13

    Dude, I love this channel. It's _exactly_ what I enjoy about being a curious person. You present these fascinating and interesting snippets of SCIENCE! and the world into these moments I can engage with in my day, even though my life isn't particularly involved in these ideas. Love it. Thank you for all you do for us, your fellow curious people around the world.

  • @Hellrider_145
    @Hellrider_145 5 місяців тому

    I began this video thinking "easy, backspin", and then I was amazed that this somehow linked to the golf ball paradox. Great video!

  • @TheRandomYoYo
    @TheRandomYoYo 5 місяців тому

    I feel happy that my dynamics intuition was correct. It was the Spin and the interaction of that spin with the surface that creates that path. Love that a simplification exists for this problem!

  • @nostradamusus
    @nostradamusus 5 місяців тому +6

    Love your videos, as usual.

  • @nerdvana2
    @nerdvana2 5 місяців тому +65

    A thought experiment: One model for understanding light is that it consists of particles. Light shined on a surface always reflects away at the same angle it came in on. Presumably, if you shoot a light particle down at the floor under a table, it will exit with at the same angle and not bounce around. That's the "angle of incidence equals the angle of departure" rule.
    Given all this I wonder what size/diameter of minute particle is required, such that spin becomes a significant factor in the departure angle?

    • @NoNamer123456789
      @NoNamer123456789 5 місяців тому +28

      Quantum mechanics is where mechanics break down, to speak in simple terms. First of all, a photon has no rest mass. Secondly, it can't spin like a ball because it's got no dimension. Honestly, it's better to think of it in terms of a EM wave that due to the collapse of the wave function results in being quantised. That's also very simplistic, but it gives you a better analogy in this case.
      As for how small a physic object with rest mass can get... Realistically, you'd start having problems with surfaces (and atoms themselves) being uneven before this effect vanishes in the world of quantum mechanics.

    • @nerdvana2
      @nerdvana2 5 місяців тому +5

      @@NoNamer123456789 Thanks for the info. Makes sense. This effect seems also dependent on the actual incident angle, and the relative traction between the ball and flat surfaces. A tennis ball, for instance, seems to have less traction on a smooth surface than a rubber ball, so the surface doesn't impart much rotation to it. I can easily toss a tennis ball under my table at a high incidence angle, and it shoots right out the other side without "reversing." Still, an interesting phenomenon.

    • @Iluvatar196
      @Iluvatar196 5 місяців тому +4

      Ah yes I concur. Definitely understand what u guys are talking about

    • @Vexas345
      @Vexas345 5 місяців тому +1

      ​@NoNamer123456789 Photons don't spin like balls, but they do have spin, and it does change when they get reflected because their polarization is changed. This also changes their reflection probabilities since the angle of polarization relative to the surface matters.

    • @NoNamer123456789
      @NoNamer123456789 5 місяців тому

      @@Vexas345 I'm gonna be honest and say that's mostly above my level of understanding, but shouldn't it matter which reflection you mean exactly?
      Like, if we take a perfect mirror, for instance shining a beam of light from water to air at an angle that causes total reflection (40 something degrees IIRC), does the polarisation/spin matter?

  • @davidsnead7728
    @davidsnead7728 4 місяці тому

    You're really good at explaining things. Thanks for the interesting video.

  • @swealf-nonofficial
    @swealf-nonofficial 5 місяців тому +51

    As an engineering undergrad student, this is very interesting to watch. I can apply my knowledge of dynamics onto your intuitive explanation and understand the topic even better. Thank you for posting always such interesting videos.

  • @georgeisenbarg8302
    @georgeisenbarg8302 5 місяців тому +3

    your transition to data brokers was so smooth i was waiting for the tie back to the video... have ever sold inssurance? very good video mr. mould up until i felt as if you were manipulating me into buying inssurance... love your videos sir!

  • @grahamcracker_wookie
    @grahamcracker_wookie 5 місяців тому +9

    I love this. My 8yo and I mess around with bouncy balls in the house. And I had to explain if you hit the ceiling it'll come back. But I've always wanted to know the physics. The rotation and friction combination is just a cool physics interaction. We actually have some odd shaped bouncy balls, flat edges, egg shaped, etc... and how they make then the physics unpredictable.

    • @grahamcracker_wookie
      @grahamcracker_wookie 5 місяців тому +2

      @@Juggler534 Haha, our favorite one is shaped like an egg. It makes for fun games of trying to catch it. Also always run the high risk of breaking something in the house.

  • @neelpatel4934
    @neelpatel4934 5 місяців тому

    Great content. Loved the explanation. Just one suggestion. For better results with to visualize spin. You can consider painting the bouncy balls solid and put a bright axis across. May be an led too for dark shot?

  • @DrRusty5
    @DrRusty5 5 місяців тому +81

    As always perfectly explained for any audience. I can't help but feel you are going to one day inadvertently solve one of the great mathematical challenges, such as the Navier-Stokes existence and smoothness problem.

    • @dhayes5143
      @dhayes5143 4 місяці тому +3

      He'll demonstrate the Banach-Tarski paradox in real life.

  • @lfoggy3061
    @lfoggy3061 5 місяців тому +28

    Really interesting Steve, thanks. What happens if you reduce the friction between ball and surface? Your rubber ball is very sticky with lots of friction. A steel ball on a hard surface will have much less friction. Or what about a hypothetical zero friction ball/surface interaction. If there is no backspin then the behaviour must completely change?

    • @TacticusPrime
      @TacticusPrime 5 місяців тому +11

      Without friction it would bounce but never catch, so it would definitely pass right through.

    • @TheSilverShadow17
      @TheSilverShadow17 5 місяців тому

      If there were no friction the ball would keep bouncing indefinitely, but would also continue to speed up in the process from the momentum gain.

    • @dielaughing73
      @dielaughing73 5 місяців тому +4

      This phenomenon relies entirely on a high-friction interaction. As does all the weird behaviour of bouncy balls (apart from their sheer bounciness)

    • @TheReallavaman281
      @TheReallavaman281 5 місяців тому +3

      ​@@TheSilverShadow17 No. Momentum is always conserved in an isolated system (frictionless), so it would absolutely not speed up. This is a pure extension of Newton's 3rd Law.

  • @killingtimeitself
    @killingtimeitself 5 місяців тому +15

    you can also think of the balls impact as the angle of the impact, imparting a potential energy on the ball, in a vector related to the angle. But since that potential energy takes time to store and release, by the time it's converted into kinetic energy, the ball has moved (in this case rolled) to a different position, which changes the vector of the kinetic energy in this case, releasing it in a different angle. I find that to be a little bit more inherently intuitive.

    • @Lillbear3
      @Lillbear3 5 місяців тому +1

      But wouldn't that require that all materials do the kinetic energy conversation at the same rate? Otherwise the angular change would be material dependent.

    • @killingtimeitself
      @killingtimeitself 5 місяців тому +3

      there are definitely technicalities here, like the basic fact that something bouncing at an angle is going to bounce back with the opposing angle, barring externalities.
      but just for understanding this specific thing, i think it makes a point. Materials are definitely a consideration but given the squishy nature of a bouncy ball and the not so squishy (in comparison) nature of something like fiberboard, it's not super significant.
      I suppose some high speed footage of a bouncy ball would be rather amusing wouldn't it?
      Though it would change depending on the material of the ball itself. @@Lillbear3

    • @notsofresh8563
      @notsofresh8563 5 місяців тому +1

      @@killingtimeitself If a rigid metal ball with the same mass and coefficient of friction as the bouncy ball is used, what effect does it have on the spin and release angle?

    • @killingtimeitself
      @killingtimeitself 5 місяців тому

      much less considering the metal wouldn't squish nearly as much for as long, meaning it would be much less pronounced. @@notsofresh8563

    • @Lillbear3
      @Lillbear3 5 місяців тому +1

      @@killingtimeitself that is a reasonable resonse. Your model does help thinking about whats happening, and I agree that material differnces would be minimal.
      A high speed video close up of each of the bounces would be cool.

  • @benmcreynolds8581
    @benmcreynolds8581 5 місяців тому

    This is related a lot to your video of a ball rolling on a spinning table. It shows that the backspin effects each bounce due to friction & change of rotation. I used to play with the spin of bouncy balls growing up. It's facinating

  • @standupmaths
    @standupmaths 5 місяців тому +83

    Hexagonal‽

    • @SteveMould
      @SteveMould  5 місяців тому +52

      That’s how I use the word, OK. Stop being such a prescriptivist.

    • @ruzziasht349
      @ruzziasht349 4 місяці тому +1

      Banana

    • @janmamu8721
      @janmamu8721 3 місяці тому +1

      grapefruit

    • @i_skin_infants
      @i_skin_infants 3 місяці тому +1

      Watermelon

    • @Dosor72
      @Dosor72 3 місяці тому +4

      Interrobang‽

  • @silvenshadow
    @silvenshadow 5 місяців тому +5

    I love this video, but at the same time it makes me feel like a weirdo. Lol. Thanks for the awesome content!

  • @pauls5745
    @pauls5745 5 місяців тому +16

    Interesting! Compare now to a steel ball bearing or polished rock, to see if elasticity and friction have some effect. Might be neat to look into what trajectory and velocity effects are.

    • @Jared-e
      @Jared-e 5 місяців тому +4

      You definitely will not see the same behaviour. This only works because the bouncy ball has such high friction that it hits the top, grips, and bounces back. Without that initial grip it will keep its forward momentum.

    • @davemuso1958
      @davemuso1958 5 місяців тому

      yeah Steve, oil up your table!

    • @jamoecw
      @jamoecw 5 місяців тому +1

      the friction is key. any kid who has played with balls around tables knows that one can bounce a ball under a table, and the only way he could get the result he did is due to the type of ball used, which as he stated tends to have an odd second bounce. use any normal ball like a tennis ball, basketball, etc. with more consistent bounces and you will have trouble replicating his result. this is why the title works in getting clicks, as many people know he is wrong and are confused and want to understand what exactly he is talking about. one should also keep in mind that the table and ground surface also matter, though to a lesser degree.

  • @DroneLearner
    @DroneLearner 4 місяці тому

    Enjoyed your Christmas Lecture demo

  • @compugab
    @compugab 4 місяці тому

    Great explanation. It made sense thanks 😊

  • @jajssblue
    @jajssblue 5 місяців тому +94

    Does this hold true for only convex polygons? I wonder how a star shape might behave.

    • @colintroy7739
      @colintroy7739 5 місяців тому +8

      + i want to see where this thread goes

    • @kevinstandart4310
      @kevinstandart4310 5 місяців тому +5

      My guess would be yes. Even with progressively more acute angles within the shape (Circle > Octogon > Hexagon > Square > Triangle) it still works. So a star-shaped polygon would be like 5 triangles put together. A practical experiment could be difficult though.

    • @TgWags69
      @TgWags69 5 місяців тому +2

      A very pointed question.

    • @kittvulpin
      @kittvulpin 5 місяців тому +2

      Well in a star shape there is definitely a higher probability of hitting a concave surface that goes against the general motion of the ball. If that happened, I would think that would change the motion of the ball entirely. The challenge would be to calculate how likely the ball is to hit one of those concave surfaces. I would think as long as it hits only convex surfaces it should still work though

    • @operator8014
      @operator8014 5 місяців тому +2

      Seems like it should work the same in theory, but I suspect it would be difficult to make a physical demonstration. Maybe a computerized simulation with perfectly elastic collisions would work out.

  • @BritishBeachcomber
    @BritishBeachcomber 5 місяців тому +5

    *Steve Mould...* One of the best science explainers on UA-cam. And non of the "I am always right" attitude of *the notorious Derek.*

    • @bren8511
      @bren8511 4 місяці тому

      A fellow schizophrenic out in the wild

    • @ruzziasht349
      @ruzziasht349 4 місяці тому

      Non or none? know or is no the difference?

  • @johnsoutherland3459
    @johnsoutherland3459 5 місяців тому

    This actually does a great explanation of the carnival basket game. Where you have to toss a ball into a basket angled on a platform and get the ball to stay inside the basket. Most people just try to toss the ball very slowly into the basket with no spin. But this explains no matter how slowly you toss it, the basket will impact a backspin that causes the ball to bounce out. But if you impart a small backspin on the ball when you toss it, it will be more likely to stay inside the basket by reversing the spin to forwards.

  • @salerio61
    @salerio61 5 місяців тому +2

    There was a paper published in Scientific America in about 1980/1981 that covered all of this including all the analysis you have done in this video. The author even gave some examples of him wanging a ball in a squash court and how it bounced off the walls and floor - he also stated that those experiments frightened him so much he would be reluctant to complete them

  • @7chanconn7
    @7chanconn7 5 місяців тому +14

    If you control the initial spin of the ball, can you get wildly different results? Everything you talked about assumed the ball had no initial spin, but I'm curios how that can affect things.

    • @Mueller3D
      @Mueller3D 5 місяців тому +3

      For the table bounce, as long as the ball bounces off both the bottom and the top, I think the result should be basically the same. Obviously with lots of forward spin, the ball might just bounce off the bottom and miss the top on the way out, and with lots of back spin could reverse and never hit the top as it comes back. But as long as the ball hits two opposite sides, at least one of the bounces will have back-spin.

  • @firaasantar4503
    @firaasantar4503 5 місяців тому +5

    I noticed something similar if you take a basketball and let it fall while it has rotation (rotation axis is perpendicular to the floor) it will bounce back spinning in the opposite direction.

  • @albanaturinde4918
    @albanaturinde4918 5 місяців тому

    Hi,
    I’ve been a dedicated follower of your UA-cam channel for years, admiring your indepth explorations and meticulous research. Your commitment to delivering topnotch content truly stands out.
    I have a captivating idea that deserve a video that I believe would pique the interest of your audience - delving into the science of heat transfer in boiling liquids and its impact on cooking. Here are a few intriguing questions to consider:
    1. Does the heat content of boiling water surge with higher flame intensity, even when the temperature remains constant?
    2. Does the fire flame size matter a lot while cooking food mostly after it has already started boiling?
    3. Are there specific cooking methods or ingredients where flame intensity plays a pivotal role?
    I'm confident that unraveling these mysteries would not only be fascinating but also provide valuable insights into everyday cooking phenomena. Moreover, it will catch the eye of those who primarily use gas for cooking. Your unique approach to explaining complex concepts would undoubtedly make this video both educational and enjoyable.
    Best regards,
    Alban.

    • @VoltisArt
      @VoltisArt 2 місяці тому

      Cooking macaroni or dry rice pretty much answers all of this. Do it enough times and you learn directly (a.k.a. the hard way) what happens with too little or too much heat.
      It's of little consequence whether one cooks with flame or electricity, once one learns how those things will act. Flames offer more immediate change in heat, while electric and induction cool more slowly. Older electric elements (and wood or charcoal fire, on the flame side) will also take longer to warm up than induction. To quickly stop a boil on an electric stove or solid-fuel fire, simply move the container or food off the heat.
      (1 ~ 2) The amount of heat makes the difference between simmering, rolling boil, and boiling over the edge. The higher boils clearly had more heat imparted. Too little heat and you can slowly evaporate the water without ever boiling.
      (2 ~ 3) High heat is good to start a boil, and a certain minimum of heat is required for that. Once the boiling threshold is met, then one usually lowers the heat.
      (3) In recipes that do not include draining excess water, simmering on a low flame for a certain time is usually required. Too much time or too much heat will burn the food and/or cause boiling over.
      I'm all for more Steve, because I love his content as well, but I don't think this is much of a mystery among those with experience cooking, nor does it require numerical math to solve. (The math is more procedural and intuitive, particularly when switching between stove types.)
      Afterthought: #2 also applies directly to thrust vs. speed. More force (and fuel) is required to accelerate or decelerate, versus cruising at the same speed.

  • @daviddavidson3639
    @daviddavidson3639 3 місяці тому

    Breaking down the physical components impact to impact (the spin and velocity of the ball) really does help highlight what is happening as we increase the number of impacts/collisions occurring. Reducing to a simplified state sometimes just allows us to understand what is happening and we can build on it like towards the golf ball paradox.

  • @raedev
    @raedev 5 місяців тому +11

    What I think surprises me the most of this is that this seems to be caused by the spin of the ball and friction pushing it back, but that tiny bit of spin seems to out-do the energy of the bounces. That's what makes it feel strange to me. It becomes less strange if i think of the examples with more angles, as the bounces there are tinier and "waste" less energy, but seeing it on just two parallel walls, my brain just refuses to accept it lol

    • @mysock351C
      @mysock351C 5 місяців тому

      In this case its due to the fact that they have enormous coefficients of friction when new. The surface is just _really_ sticky, and combined with the high coefficient of restitution it always made playing with them interesting, at least at the start. The first couple of times before the ball gets dirty, it does interesting things since it picks up so much angular velocity when it collides with a wall or the floor (Edit: and it becomes less strange perhaps when we realize that the opposing side of the ball has the opposite linear velocity when it contacts the next surface). After that, it just bounces the way you think it would due to the surface no longer being as tacky after it picks up a layer of dirt. Clean it, and its back to its old self, again.🙂

    • @woob31
      @woob31 5 місяців тому

      I agree with your comment, intuitively it does feel strange. The way I tend to explain it is I believe one thing @stevemould could dig a bit further is the relative speed of the surfaces on impact.
      With the rotation speed gained on the first impact, the relative speed of the back spinning ball and surface during the second impact is approximately 2x the horizontal speed of the ball itself. That's how it can go back, not only cancel it's horizontal speed

    • @mysock351C
      @mysock351C 5 місяців тому

      @@woob31 It would have been instructive to see him actually put some oil or talc on the balls surface. The real “solution” to this paradox is that when the ball collides, a substantial portion of its linear momentum is converted over to angular momentum due to the no-slip condition at impact. This slows its horizontal speed component quite a bit, and stores the needed energy to reverse its direction as angular velocity. You could even solve it analytically since it’s a fairly simple problem. Eliminate friction, tho, and it would just sail out the other side.

    • @mysock351C
      @mysock351C 5 місяців тому

      @@woob31 Now, what would be interesting to see is what percentage of the balls linear velocity is converted to angular velocity. Its possible that there are internal mechanisms in the material itself that also convert a portion of the velocity that is perpendicular to the table's surface to angular velocity as well. That would potentially account for why it doesn't quite intuitively do what we expect it to.

  • @bumbo222
    @bumbo222 5 місяців тому +3

    This video also reminds me of the most recent Veritasium video about the SAT question that everyone got wrong. I think the weird oscillating behavior of the ball in a container could be related to the coin rotation paradox. Also, is the motion caused by the friction between the ball and container generating a perpendicular force as a result of gyroscopic procession?

  • @user-rm2qj2jh4l
    @user-rm2qj2jh4l 5 місяців тому +1

    That is so interesting, great video! I love how Steve goes from talking about simulations of charged particle motion to native advertising so fast you almost think that those pesky spam emails and data brokers actually have something to do with the rest of the video 😂😆 I see you, Steve, I see you! haha

  • @gunterkewes9594
    @gunterkewes9594 5 місяців тому

    Another inspiring video, well done👍.
    1) I wonder if it's possible to "flip the grip", potentially with table tennis rubbers on the walls and a ping pong ball. Guess one would need in particular soft table tennis rubbers.
    2) if yes, one could "generalize" things with respect to incoming spin experimentally quite easy, i.e. by using a table tennis robot.

  • @MichaelKakam
    @MichaelKakam 5 місяців тому +7

    7:58 - you say hexagonal, but show octagonal :)
    this really helps with understanding the cylinder though! thanks!

    • @SteveMould
      @SteveMould  5 місяців тому +7

      Damn! I edited out the word hexagon about 100 times in this video. Can’t believe one slipped through.

    • @cleon_teunissen
      @cleon_teunissen 5 місяців тому

      @@SteveMould How did you search for occurrences? The reason I ask: the youtube machine-generated transcript is crazy good. So: with access to transcription software of that quality you can make it a text search, instead of you going through the audio. (Maybe Google's speech-to-text technology is available as part of Google Docs, I don't know.) Anyway, these days, if I want to search in a (youtube) video, I search the transcript.

  • @cafebrasileiro
    @cafebrasileiro 5 місяців тому +5

    I wanted to see you actually using the spin on your favor to get the ball to the other side. Sadly it wasn't shown... That would be satisfying haha

  • @ht4247
    @ht4247 17 днів тому

    clear explanation, perfect.

  • @bogravel8551
    @bogravel8551 5 місяців тому

    Pitcher's in American baseball know some of these physics as well to attempt to control the baseball for either the hitter to miss OR if hitter makes contact with spinning ball the 'bounce' (contact of) the bat is directional somewhat as ball travels back toward the field of play. I feel this plays a factor into how many 'out of bounds' the ball goes. Course the bat plays a spin factor into redirecting ball spin/direction too. Enjoyed video.

  • @wbfaulk
    @wbfaulk 5 місяців тому +12

    At 7:57, I'm assuming that's a Mould hexagon you're talking about: the sort with eight sides.

    • @RavenMobile
      @RavenMobile 4 місяці тому +1

      That's pretty funny! 😆

    • @sjchew1539
      @sjchew1539 4 місяці тому +1

      Is this a reference to Parker Square 😂

  • @imjustbryce6235
    @imjustbryce6235 4 місяці тому +554

    Now explain why my wife left me

    • @JonasThente-ji5xx
      @JonasThente-ji5xx 2 місяці тому +6

      Ouch

    • @gentlemanthesavior9601
      @gentlemanthesavior9601 2 місяці тому +13

      Prob your wife is the ball, cuz she doesnt want to be with ya.

    • @vilian9185
      @vilian9185 Місяць тому +6

      skill issue

    • @vilian9185
      @vilian9185 Місяць тому +10

      ​@@gentlemanthesavior9601the ball come back his wife didn't

    • @digom4rs942
      @digom4rs942 Місяць тому +9

      Cause u keep watching YT videos instead of paying attention on her.

  • @davidking3931
    @davidking3931 5 місяців тому

    Nice follow up video. An additional idea that may really drive the display home is to use an oil or low friction ball and surface to eliminate the effect of reaction gyration/spin to get a very different result. Put the two side by side to illustrate the importance of Newton's 1st 'force acts upon it' and how the subtle effect of friction drives our world..

  • @samtibbitts
    @samtibbitts 5 місяців тому +1

    I remember as a teenager analysing dribbling a basketball and noticing that I was not simply pushing the ball straight down to the floor but rather I was pushing it forward slightly and imparting a small backspin. I also noticed that the ball bounced back up toward me with a small forward spin.

  • @kvg4790
    @kvg4790 5 місяців тому +6

    Is it a requirement that it must be an elastic collision? Most of the instances of this happening (bouncy ball on hard surface or cue ball against billiard table rails) is one elastic body and one rigid body. Would pure friction between two rigid bodies allow for this to work? Also, how would two elastic bodies affect the angle? I’m guessing there’s some limit to slippage, so rotation won’t really be that much greater, but since both bodies deform slightly, the angle of reflection may be slightly different.

    • @moosenensen1592
      @moosenensen1592 5 місяців тому

      If it wasn't an elastic collision the ball would simply stop moving after the collision as the energy would be transferred rather than reflected

    • @kvg4790
      @kvg4790 5 місяців тому +2

      @moosenensen1592 That’s wrong because while nothing is perfectly inelastic, anything sufficiently not deformable is considered inelastic in a low force situation. Look up inelastic collisions. A great example is newton’s cradle.

  • @hans1120
    @hans1120 5 місяців тому +8

    "I'm anthropomorphising the ball, but that's okay.": I love your extremely conscious and subtle way of showing awareness of metaphysical traps in your videos😁

  • @Killerbeez13
    @Killerbeez13 5 місяців тому +1

    Hey Steve love your videos
    I was wondering what will happen if we take odd no of Sides for the container

  • @troypollonais9143
    @troypollonais9143 4 місяці тому +1

    This video, and to a greater degree, this channel, is the definition of UA-cam rabbit hole

  • @kvg4790
    @kvg4790 5 місяців тому +11

    This is used in pool/billiards. Side English at a rail and you change the angle the cue ball bounces off.

  • @AdmiralThumbs
    @AdmiralThumbs 5 місяців тому +11

    I'd be interested to see how this effect changes by reducing the cooeficient of friction between the ball and the sides. At first I thought of using a smoother/more slippery ball, but getting one that also has good bounce seems difficult, so perhaps an easier test could be simply soaping up the sides.

    • @shadyarian
      @shadyarian 5 місяців тому +4

      Make both solid surfaces really hard, like metal, and use a hardened steel ball, or a glass ball. Both of those are quite bouncy and have low friction.

    • @stickiedmin6508
      @stickiedmin6508 5 місяців тому +2

      What about using the same basic ball, but change the surfaces it's bouncing on? Glass, sheet metal, wood, sand paper etc?

  • @ScottMaxwell_UK
    @ScottMaxwell_UK 2 місяці тому

    @stevemould - highest praise I can give as a fifty-something; you are the NEW Johnny Ball! I hope you know how high a complement that is! Have just spent an hour describing spin, angular momentum and friction to my 15 year old daughter and she didn't even notice it was a lesson! Top man - keep this up....

  • @lusher00
    @lusher00 4 місяці тому

    Very similar to a corner or retroreflector like you find on a bicycle. This is also a good model to help explain stealth technology. Certain shapes will reflect light (radar) back to the source no matter what the incident angle is.

  • @dylanlasky2389
    @dylanlasky2389 5 місяців тому +5

    Is there any initial spin you can impart to the ball to get it to come out the opposite side of the cube?

    • @martindinner3621
      @martindinner3621 5 місяців тому

      Yes. With enough top spin it will generate lift and never actually hit the cube.

  • @jorisev
    @jorisev 5 місяців тому +3

    Still watching, but I'm wondering whether you could alter the friction between the ball and the surfaces. If you can reduce the friction, shouldn't the spin have no effect any more?

    • @Vindolin
      @Vindolin 5 місяців тому +1

      Yep, what's with smoother ping pong or billiard balls.

  • @TheVoidSinger
    @TheVoidSinger 5 місяців тому

    While I understood the previous explanation, you're absolutely right that the discrete version makes it so much clearer what's happening. There may be some more meat in area (pun intended) of the discrete proof of Kepler's equal area law, but I can't quite put my finger on it yet

  • @methamphetamelon
    @methamphetamelon 4 місяці тому

    I already had a hunch it had to do with spin. Same reason a rubber ball spun backwards and dropped will bounce backward, but now have forward spin and bounce forward, then getting backspin, etc. etc. Literally hops back and forth until all the energy is lost. Used to do it all the time as a kid. Love spinning a bouncy ball different ways to see how much of an effect it would have when bounced off various surfaces.

  • @AGlimpseInside
    @AGlimpseInside 5 місяців тому +3

    My three-year-old son has no problem doing this. 😂

  • @aikumaDK
    @aikumaDK 5 місяців тому +5

    Does Steve have access to a super slow mo camera?
    It would be interesting to see how the ball behaves in the microseconds where the ball's spin + friction makes it turn direction, especially at the two and four surface cases

    • @hylje
      @hylje 5 місяців тому

      No, he only has access to particularly slow flying bouncy balls.

  • @jackphilipdavies
    @jackphilipdavies 4 місяці тому

    I honestly didn't understand your golf ball paradox explaination despite convincing mysef I did. This video has given me closure

  • @bradley3549
    @bradley3549 5 місяців тому +3

    WHAT A DAY. A good Vertiasium video, a great mind twister from Mattias Wandel, and now a Steve Mould video. Is it science day or something?

  • @CraftAero
    @CraftAero 5 місяців тому +3

    Every indoor (Box) Lacrosse player learned this one the hard way.
    It doesn't take too long to learn to count the bounces and predict the next bounce. Keeping your own balls clear because that ball is solid rubber and moving ~80mph.
    ie: if you chase the ball, you'll never catch it. If you know where the ball "will" be, you're a player.