Apache Spark - 04 - Architecture - Part 2

Поділитися
Вставка
  • Опубліковано 1 гру 2024

КОМЕНТАРІ • 112

  • @ScholarNest
    @ScholarNest  3 роки тому

    Want to learn more Big Data Technology courses. You can get lifetime access to our courses on the Udemy platform. Visit the below link for Discounts and Coupon Code.
    www.learningjournal.guru/courses/

    • @mjeewani123
      @mjeewani123 2 роки тому

      I really like your content, very easy to understand. THANK YOU. Have you covered any where how RDD helps recover from fault tolerance?

  • @iitgupta2010
    @iitgupta2010 5 років тому +18

    This is the best video....wt a explanation sir..mind blowing. I feel bad where bad teacher get too much attention where people like you don't get much...
    U r brilliant

  • @philippederome2434
    @philippederome2434 5 років тому +11

    I love the curtains opening up special effect!

  • @davidpeng8431
    @davidpeng8431 Рік тому

    Your video is one of the best for Spark, not spend too much on theory and high level, but down to the earth, very practical.

  • @manasamathi7157
    @manasamathi7157 2 роки тому

    Even beginners can understand the flow who has zero knowledge about spark.. Great explanation 😊

  • @sethiabhithemaverick
    @sethiabhithemaverick 6 років тому +4

    This is the easiest and most explanatory explanation of complete spark architecture one can ever get

  • @SachinChavan13
    @SachinChavan13 4 роки тому +1

    Wow ! Very crisp and to-the-point explanation. Really helpful. Thank you Prashant!

  • @muhammadarslanbhatti2139
    @muhammadarslanbhatti2139 4 роки тому

    Hands down the best explanation you'll find on youtube

  • @sthirumalai
    @sthirumalai 5 років тому

    I started learning Spark by enrolling to a self learning course in UDEMY but by far this is the best video i have ever watched which explained the core concepts of SPARK clear and precise. I appreciate your efforts

  • @rajatsharma6137
    @rajatsharma6137 3 роки тому

    extremely lucid and to the point...congrats !

  • @franciscovinueza5320
    @franciscovinueza5320 5 років тому

    Images, Colors, examples and clear explanations! This video has everything! Keep up the good work! Thank you Sir.

  • @maheshpoddar4065
    @maheshpoddar4065 4 роки тому

    Exceptional way of explaining and making concepts crystal clear. I am enjoying it the way I used to enjoy your earlier videos on Hadoop.

  • @sanjaysoni5017
    @sanjaysoni5017 4 роки тому

    Awesome video with correct explanation.

  • @anilpatil3056
    @anilpatil3056 6 років тому +1

    Highly recommended for every Spark newbee. BTW thanks a lot..

  • @gefeizhu3953
    @gefeizhu3953 5 років тому +1

    Fantastic video,I have subscribed your video!

  • @erpoojadak
    @erpoojadak 6 років тому +1

    the best tutorial i have ever seen..simply awesome

  • @abhishekt450
    @abhishekt450 4 роки тому

    Just brilliant 👌.. point to point..

  • @nishantgupta8562
    @nishantgupta8562 6 років тому

    Best video by far.. What a teacher you are.

  • @philippederome2434
    @philippederome2434 5 років тому +2

    I like the animal logos for the 3 APIs, turtle for RDD (slowest), cat for SQL-Dataset (medium), rabbit for DataFrame (fastest), but see Brian M. Clapper recent video on Frameless API (fast, compile-safe, and more functional, i.e. can compose actions).

  • @Nasirmah
    @Nasirmah 5 років тому

    It should be a=> (a(1),1)) to get the second field if you want the result to be as shown in 9:30. First field of the array is empty string, but you can still reduce by key since it will be all empty string at the end but not if all files didnt contain /etc root path. I find it useful to run collect() at each step like kvRDD.collect() to see. Thank you very much for the best spark tutorial, I let the adds run to help out.

  • @bhavaniv1721
    @bhavaniv1721 5 років тому

    Please post more videos,I following all Ur video,Ur videos are something different to others.....it easily understandable way

    • @pratiksingh9480
      @pratiksingh9480 3 роки тому

      you mean Data Savvy :P , Yeah Prashant is really good in explanation

  • @kannanarumugam9257
    @kannanarumugam9257 7 років тому

    Thank you ver much!, nicely explained spark architecture. there is no other better way than this.. keep the good work.!

  • @khelifakemouche4070
    @khelifakemouche4070 6 років тому

    Great tutorial and Excellent teaching

  • @pramodswain6043
    @pramodswain6043 6 років тому

    It is really appreciated,i never ever seen an explanation like this,so thanks a lots sir for revealing such extraordinary skills.....

  • @Vihaan_Nigam16
    @Vihaan_Nigam16 5 років тому

    Excellent way of teaching ...Thank you

  • @sachinhaldankars
    @sachinhaldankars 6 років тому

    Simply Awesome explanation...

  • @vijaykumar-wq9db
    @vijaykumar-wq9db 4 роки тому

    Thank you sir...super video

  • @asksmruti
    @asksmruti 6 років тому

    Your tutorials are simply awesome.. :-) Super Like

  • @funwithshreeraj
    @funwithshreeraj 5 років тому

    Outstanding..

  • @shivam.shakya
    @shivam.shakya 2 роки тому

    Great video

  • @damodharable
    @damodharable 6 років тому +2

    excellent teaching skills,thanks a lot :)

  • @sandeepkumarvadde
    @sandeepkumarvadde 5 років тому

    This is an extraordinary explanation of spark architecture.
    Sir, please pick a few examples to implement on cluster mode too.

  • @shubhampatil2391
    @shubhampatil2391 Рік тому

    Thank you for the great content!! just one request though please add a highlighter to your pointer it is kind of hard to track its movement and often have to rewind to check what actually you clicked on

  • @tejaswianagani8756
    @tejaswianagani8756 6 років тому

    Very very good explaination sir, am very much thankfull to you.

  • @deepanshunagpal6440
    @deepanshunagpal6440 3 роки тому

    nicely explained.

  • @malapatiprasanna
    @malapatiprasanna 5 років тому

    Thanks a lot, sir for your outstanding efforts in making us brilliant. Could you please add some more spark videos shared variables, detailed transformations, and actions. Really I am double satisfied with your explanations, going forward we want to see more from you on spark.

  • @RahulEdvin
    @RahulEdvin 5 років тому

    excellent explanation !

  • @vishalteli7343
    @vishalteli7343 5 років тому

    Simply Best!

  • @TheVikash620
    @TheVikash620 6 років тому

    Great explanation sir. Waiting for new concepts to be covered in future videos.

  • @AzharHussain2u
    @AzharHussain2u 4 роки тому

    just awesome

  • @sanjaykumarmahapatra
    @sanjaykumarmahapatra 7 років тому

    Nice way of explanation. Thank you so much for your effort on making so nice tutorials. I am becoming a fan of you man! keep it up (Y)

  • @raunakgpt
    @raunakgpt 4 роки тому

    Very Good video. Thanks sir. But I didn't anything with Apache Spark -05 in Playlist. Do we have some more videos on architecture?

  • @sagarsinghrajpoot3832
    @sagarsinghrajpoot3832 5 років тому

    Great video 🤓🤓sir

  • @akashhudge5735
    @akashhudge5735 4 роки тому

    nice explanation

  • @premrajkumar6910
    @premrajkumar6910 7 років тому

    Nice video with very clear explanation. But We will have to wait very long for a new session . Please try to upload fast, otherwise it will take a year to learn Spark.

  • @althafmohammed5285
    @althafmohammed5285 6 років тому

    It's really amazing it's really real time level

  • @csharma8732
    @csharma8732 5 років тому

    Very nice video sir. Thank you.

  • @biswajitsarkar5538
    @biswajitsarkar5538 6 років тому

    Great explanation !!

  • @paritoshahuja5058
    @paritoshahuja5058 5 років тому

    Really amazing explanation thank you

  • @nationviews6760
    @nationviews6760 7 років тому

    Thank you so much, Sir, for providing such a nice practical explanation.

  • @송찬호-r8j
    @송찬호-r8j 5 років тому

    very very amazing . thank you

  • @damodargoud6263
    @damodargoud6263 5 років тому

    thanks for sharing your knowledge.

  • @annaynomouse2821
    @annaynomouse2821 4 роки тому

    How do you create animation shown from 4:50 to 4:55. Which software. I like how you bring clarity visually.

  • @pratiksingh9480
    @pratiksingh9480 3 роки тому

    Hi Prashant Sir ,
    First things first :
    I am planning to take-up the course . Your explanation viz etc. are awesome kudos for that. The only thing that concerns me is that I have lot of questions when I study anything , some silly as well.
    Is there any channel (Slack/Discord etc for enrolled students) , where the doubts are cleared. Some AMA kind of sessions etc , becuse going through stuffs and having uncleared doubts will leave a learner is almost the same state. Will share the same message with you over lnkedin as well , not sure how frequently you look into UA-cam comments.

  • @KoushikPaulliveandletlive
    @KoushikPaulliveandletlive 5 років тому

    just too good, you need too much of knowledge, when you can explain the complex things such easily

  • @pc0riginal870
    @pc0riginal870 5 років тому

    thank you so much from the bottom of my heart. god make you happy.

  • @a143r
    @a143r 6 років тому

    xcellent sir....!

  • @143badri
    @143badri 5 років тому

    What is the default number of partitions if we are not defining it...

  • @surajpillai2117
    @surajpillai2117 5 років тому

    hello... I had a question. The intermediate RDDs which are generated, the partitioned data under them would also be distributed to the executors? or would the redistribution only happen on an action? Please help! :)

    • @ScholarNest
      @ScholarNest  5 років тому

      Everything is lazy so nothing happens until an action is executed.

  • @avijitmukherjee678
    @avijitmukherjee678 4 роки тому

    Thanks so much, Sir

  • @ramkumarananthapalli7151
    @ramkumarananthapalli7151 3 роки тому

    Hi
    Thanks a lot for these videos. They are quite helpful. In this video you mentioned that RDD is immutable, but you have overridden same RDD right, by changing number of partitions. Also we can load different text file into the same named variable(RDD). Could you explain how it is immutable in this case.
    Thanks in advance for your help.

  • @NareshJadapalli236
    @NareshJadapalli236 5 років тому

    I am confused in one step.
    When we say, RDD distributes data into nodes.
    We create 5 partitions from RDD. It means RDD has loaded all the data and do partitioning, is it?
    Will it load data from different nodes to the driver node and keep it in memory and distribute across?
    If yes, it is not following data locality paradigm and data movement is very costly. (I am sure spark follows data locality)
    What am I missing?

  • @repsycled1605
    @repsycled1605 6 років тому

    One of the best video series for learning .. Do you also provide classroom trainings as well

  • @AwaraGhumakkad
    @AwaraGhumakkad 4 роки тому

    Sir i have executed the textFile() command with 5 partitions in cluster mode (5 W) but every time I could see that job is being executed only 1 of the workers.
    I mean in every run only 1 worker was executing all the partitions.
    is there any extra configuration required here.
    i am using spark-shell mode

    • @AwaraGhumakkad
      @AwaraGhumakkad 4 роки тому

      Please ignore this i got my answer .
      thanks anyways

  • @sbylk99
    @sbylk99 5 років тому

    Best tutorial thank you!

  • @sunilgaikwad3254
    @sunilgaikwad3254 6 років тому

    Hello Sir, loved this tutorial..thanks a lot.
    I have one doubt, consider following scenario:
    Input data size(raeding from hdfs): 20 GB
    No of executors: 2
    executor memory : 8 GB
    RDD partition factor: 2
    and we run a spark job in client mode.
    So in this case:
    1. how total 20GB data will get processed through sparkjob?
    2. How many stages and task will get created?
    3. how total 20gb data will be partitioned?

    • @ScholarNest
      @ScholarNest  6 років тому

      1. Do you need 20GB memory to process 20 GB data? No. More memory can improve performance but you can still process it with less memory.
      2. Stages depend on your logic and the number of task on executors.
      3. You asked for two partition so it will shuffle and make it two in that stage. Next stage depends on other factors.

  • @4ukcs2004
    @4ukcs2004 6 років тому

    Sincerely looking for spark streaming with Kafka tutorial sir...when r u pubishing sir..you are the best..

  • @AIMLBites
    @AIMLBites 5 років тому

    Thanks for the wonderful explanation in this video. Can you please tell if this is a general scenario for each job in spark, that map and reducebykey operations usually run in 2 different stages always or if there are cases that they can run in a single stage as well. Any examples or leads would be appreciated!

    • @ScholarNest
      @ScholarNest  5 років тому

      Think about it. Map and Reduce? You are already talking about two stages.

  • @rakeshsahoo16
    @rakeshsahoo16 5 років тому

    Why proc and opt came in 1 partition ??

  • @gopinathGopiRebel
    @gopinathGopiRebel 6 років тому

    Sir i have a doubt like how no of cores of executors and processing of partitions depend on ?

  • @tajirapb
    @tajirapb 5 років тому

    With spark 2.3.2, number of elements within each partition is not being displayed by the code that your have shown.

  • @helloworld4u
    @helloworld4u 4 роки тому

    Thankyou

  • @robind999
    @robind999 5 років тому

    Very good one .any airflow demo?

    • @ScholarNest
      @ScholarNest  5 років тому

      That's still incubating...I do not use open source until they graduate to become production ready.

    • @robind999
      @robind999 5 років тому

      @@ScholarNest Thank you so much for this info.

  • @nikhil199029
    @nikhil199029 6 років тому

    is reducybykey a spark/scala specefic function?

  • @premrajkumar6910
    @premrajkumar6910 7 років тому

    Also if possible please explain the code using Java APIs too. I am doing development using Java API, but some methods are not supporting even after it's mentioned in API document and throwing run-time error. Is that when we are doing development using Java API or Python API, will it get converted to Scala language internally?

  • @NikhilKekan
    @NikhilKekan 6 років тому

    Hello,Great tutorial.
    Can you please elaborate more on reduceByKey((x,y) => x+y) that you have used to count number of pairs with same key.
    I am a bit confused how x+y will give us the total count

    • @xmankamal
      @xmankamal 5 років тому +2

      Here reduceByKey is aggregating the result of array (for similar key) to one value.
      Suppose you have (key, value) list :- List((hello, 1), (world, 1), (hello, 1), (hello, 2)).
      reduceByKey will perform operation on similar key and x, y denotes the value only from key, value pair (you cannot perform operation on key here)
      For key: hello
      rdd.reduceByKey(x,y => x+y) -equivalent to (1,1 => 1+1) => List((hello, 2), (world, 1), (hello, 2))
      There are still pair exists belongs to hello key here. so again operation will be perform
      rdd.reduceByKey(x,y => x+y) -equivalent to (2,2 => 2+2) => List((hello, 4), (world, 1))
      Now list has only one hello key pair, so no further reduction can be possible here.

  • @kidslearningscience
    @kidslearningscience 5 років тому

    A supplementary video with Amazon EMR please.

  • @DavidZYW
    @DavidZYW 6 років тому

    thanks, I have a question, does the shuffle and sort executed in multiple nodes ?

    • @ScholarNest
      @ScholarNest  6 років тому

      Yes, every node that owns a partition must participate in shuffle & sort.

  • @abhishekbarnwal5867
    @abhishekbarnwal5867 5 років тому

    I am using spark 2.2.0 but the code shown by you in the video doesn't print any output in shell.
    val myrdd = sc.textFile("UserData.txt",4)
    myrdd.foreachPartition(x => println("No. of elements in partition: " + x.count(y=>true)))
    Please share the workable code.

  • @amirboutaghou274
    @amirboutaghou274 5 років тому

    hello , so first of all i want to thank you for this superb tutorial. please i have one question following your example of imagin we have 10 partitions and 2 executor and we lets suppose in this example we dont have transformation that gona cause shuffle how many task parrallel there is it 5 ?
    thank in advance for your answear

    • @ScholarNest
      @ScholarNest  5 років тому +1

      Why do you think it's going to be 5?
      Because 10 partitions /2 executors?
      Number of executor have nothing to do with how many tasks are created. Once tasks are created, they will run on only two executors because you have only two executors.

    • @amirboutaghou274
      @amirboutaghou274 5 років тому

      @@ScholarNest first of all thank for your quick reply. so i undersntand in my example number of task created per stage depend only by number of partition . number of execeutor have nothing to with it im a correct plaese ? so i my example i will still 10 task because i have 10 partition ?

  • @Modern_revolution
    @Modern_revolution 5 років тому

    Super happy

  • @KnowWorldsFact
    @KnowWorldsFact 5 років тому

    Thanks Sir, Can you please give me link for part-3. I couldn't find

    • @ScholarNest
      @ScholarNest  5 років тому +1

      Check the playlist

    • @KnowWorldsFact
      @KnowWorldsFact 5 років тому

      Thanks,will Check. you have explained all videos in very simple language. :)

  • @ravikirantuduru1061
    @ravikirantuduru1061 6 років тому

    Sir I have one doubt is no of partitions is equal to no of executors?

  • @nidhidewan5173
    @nidhidewan5173 7 років тому

    waiting for more videos :)

    • @ScholarNest
      @ScholarNest  7 років тому

      +Nidhi Dewan, coming soon.... I am slightly busy to code a website for learning journal. Just another week away from the release.

    • @tushibhaque863
      @tushibhaque863 7 років тому

      I thank you from the deep of my heart for your hard work....

  • @jaineshmodi
    @jaineshmodi 7 років тому

    Sir I am doing development using spring Kafka, could you please help me with consumer question? how do i poll in regular intervals e.g every 5 mins and how do I specify number of records to be read in every poll?
    I saw batch listener can be used to specify number of records to read but did not find polling interval option.
    Thanks.

    • @ScholarNest
      @ScholarNest  7 років тому

      +Jainesh Modi what is spring Kafka?

    • @jaineshmodi
      @jaineshmodi 7 років тому

      Learning Journal sir I meant to say Kafka with spring boot

    • @ScholarNest
      @ScholarNest  7 років тому

      +Jainesh Modi have you seen my Kafka videos? I have discussed consumer APIs in detail. I am not sure what do you mean my batch listener?

    • @jaineshmodi
      @jaineshmodi 7 років тому

      Yes sir i have gone through ur videos.
      my requirement is as a consumer i want to put delay with every poll and also want to control number of records being read in every poll.

    • @ScholarNest
      @ScholarNest  7 років тому

      +Jainesh Modi to be honest, I haven't used spring Kafka, just saw the documentation. Looks interesting. I will plan for some time to evaluate it and send you details if I find an answer to your problem.

  • @ravikirantuduru1061
    @ravikirantuduru1061 6 років тому

    I have one doubt is no of partitons is equal to no of executive?

    • @csharma8732
      @csharma8732 5 років тому

      NO, Executor runs tasks in it.

  • @elvinanoronha6032
    @elvinanoronha6032 5 років тому

    Awesome explanation !!!!!