Andrew Tate solves Math Olympiads Problem (number theory) | Level 3

Поділитися
Вставка
  • Опубліковано 15 січ 2025
  • Improve in math with my newsletter : mathwisdom.sub...
    Instagram: / mathwisdom1
    Join our discord server : / discord
    #mathematics
    #mathcompetition

КОМЕНТАРІ • 45

  • @MathWisdom42
    @MathWisdom42  11 місяців тому +12

    Anyone managed to solve the problem at the end?

    • @JoE-mAmA-yO-mAmA
      @JoE-mAmA-yO-mAmA 11 місяців тому +1

      Is the answer 6?

    • @MathWisdom42
      @MathWisdom42  11 місяців тому

      Great ! Feel free to share your reasoning@@JoE-mAmA-yO-mAmA

    • @John-cl8iv2
      @John-cl8iv2 11 місяців тому

      @@MathWisdom42 I got 6 because we first look at divors of 2004 which are 2^2(3)(167), now we se that we facor put 2 from eaach of the numbers, and those numbers would be odd, so there only one 2 in GCD. Now we 3 and 167, now we see that 167 does not divide 2002^2+2 giving us the idea that GCD is 2 or 6, so we have find if 3 divides all the things in the set. Now using some modular arthmatic and pattren finding we can find that 3 divides it( I am tryint to post a link to my work but youtube is hiding it), so 6 is GCD.

    • @MathWisdom42
      @MathWisdom42  11 місяців тому

      Well done ! @@John-cl8iv2

    • @John-cl8iv2
      @John-cl8iv2 11 місяців тому

      thanks @@MathWisdom42

  • @Nishkarsh-gc5yr
    @Nishkarsh-gc5yr 11 місяців тому +66

    this wasnt supposed to go THIS hard

  • @mohamedfarih2502
    @mohamedfarih2502 11 місяців тому +31

    Huge w bro, we seriously need more of these.

  • @KJ-on6eg
    @KJ-on6eg 11 місяців тому +14

    This is so oddly motivating

  • @wabc2336
    @wabc2336 11 місяців тому +14

    By algebra I found that n^17 - n = n(n^8 + 1)(n^4 + 1)(n^2 + 1)(n+1)(n-1) = M.
    Since n,n+1 and n-1 are all factors, M is divisible by 3 and 2.
    Using Fermat's little theorem, n^17 == n mod 17. Therefore, n^17 - n == n - n == 0 mod 17. So 17 divides M.
    Also, M = (n^8 + 1)(n^4 + 1)(n^5 - n), and n^5 - n == n - n == 0 mod 5. So 5 divides M.
    (We could again show that 3 and 2 are divisors because M's is a multiple of (n^2 - n) and of (n^3 - n), and n^2 - n == n - n == 0 mod 2, and n^3 - n == 0 mod 3.)
    Thus we have shown that 2, 3, 5 and 17 are always divisors of M.
    And 257 is not always a divisor.
    The GCD is 510.

    • @MathWisdom42
      @MathWisdom42  11 місяців тому +9

      well done, you just still need to justify why 257 is not always a divisor.

  • @vornamenachname9827
    @vornamenachname9827 11 місяців тому +6

    2:22 n^17 isn't n^4 mod 3.

    • @MathWisdom42
      @MathWisdom42  11 місяців тому +3

      Thank you for noticing that, it is typing mistake, it should be n^3 not n^4, final result is still the same.

  • @wabc2336
    @wabc2336 11 місяців тому +9

    Explain the problem more. We are looking for the greatest common divisor of n^17 - n and n? It would have to be n.
    Are we looking for the greatest common divisor of n^17 and n? It would also be n.
    Are we looking for the greatest number that is a gcd of n^17 - n and any real number? It would be n^17 - n.
    Or maybe we are just looking for the greatest divisor of n^17 - n. No "common".
    But the greatest divisor of n^17 - n would still be n. So we are really looking for the greatest number d that divides n^17 - n for any n.

    • @CombiHarvester-mo4jh
      @CombiHarvester-mo4jh 8 місяців тому

      The level of pendanticness reminds me of the good old days ; )

    • @prag9582
      @prag9582 6 місяців тому

      Yeah, that was my first reaction, what is "gcd" doing in the first statement of the problem????
      It would be better stated as "find the largest k in N such that k is a divisor of n^17-n for all n in N"

  • @raddurdey2088
    @raddurdey2088 11 місяців тому +3

    why is'nt this channel blowing up

    • @Grassmpl
      @Grassmpl 8 місяців тому

      It's nonsingular. No blowup needed.

  • @razvanrusan9319
    @razvanrusan9319 11 місяців тому +5

    this is SUPERB

  • @CombiHarvester-mo4jh
    @CombiHarvester-mo4jh 8 місяців тому

    Thanks Tate, I'm literally 10 years too old for this stuff

  • @lampoilropebombs0640
    @lampoilropebombs0640 11 місяців тому +1

    To be fair, Andrew Tate sounds good. He would be considered to be an excellent success if only he took back all the thing he said about money, people, society, etc.

  • @hedu5303
    @hedu5303 11 місяців тому

    This will be my favorite channel

  • @nebula3415
    @nebula3415 2 місяці тому

    average trivial b orders 2 club question

  • @amagilly
    @amagilly 11 місяців тому +1

    Do Travis Bickle.

  • @The4thNagai
    @The4thNagai 11 місяців тому

    More of this for (Tingkatan 2)Malaysian?

  • @ILoveMaths07
    @ILoveMaths07 11 місяців тому

    You need to explain more.

  • @goodlack9093
    @goodlack9093 11 місяців тому

    this is what a sigma does for a living!

  • @unknownaccount8411
    @unknownaccount8411 6 місяців тому

    Andrew Tate is a legend 😂

  • @كرمالكرد
    @كرمالكرد 5 місяців тому

    Is this an IMO problem?

    • @MathWisdom42
      @MathWisdom42  5 місяців тому

      It is for preparing to the IMO but not an IMO problem itself. They are usually harder.

  • @onradioactivewaves
    @onradioactivewaves 11 місяців тому

    If you're going to do Tate, at least do a matrix problem.

  • @matejcataric2259
    @matejcataric2259 8 місяців тому

    More of Andrew Tate!!,mybe calculus or real analysis..#AikidoAnalysis

  • @Θρησκόληπτος
    @Θρησκόληπτος 11 місяців тому

    1.) We know it must be a product of primes to the first power. It cannot contain a square, because p^2 wouldn't divide p^17-p.
    2.) It suffices to check for prime factors less than 17, because otherwise we know that there exists a primitive root of p, therefore an n such that p is the smallest number satisfying p | (n^p-n) therefore p doesn't divide n^17-n.

  • @AyushTH
    @AyushTH 11 місяців тому

    Thats cap bro

  • @Pasan34
    @Pasan34 11 місяців тому +4

    Is this voice simulations? Impersonation? Real Andrew? WTF>

    • @dalloslevente
      @dalloslevente 11 місяців тому +6

      It's AI generated

    • @keyan1219
      @keyan1219 6 місяців тому

      its the real andrew tate cant you hear his voice?

  • @OmarBenjumea
    @OmarBenjumea 11 місяців тому

    Even Biden could solve this problem.

  • @Nishkarsh-gc5yr
    @Nishkarsh-gc5yr 11 місяців тому +2

    Tate W

  • @AndrewTateTopG1
    @AndrewTateTopG1 11 місяців тому +1

    Didnt understand shit

  • @mason5557
    @mason5557 10 місяців тому

    'Promo sm'

  • @MathWisdom42
    @MathWisdom42  11 місяців тому +1

    Check Mr beast working on a math Olympiad problem :
    ua-cam.com/video/ygl240Y3hjw/v-deo.html