The Calculus You Need

Поділитися
Вставка
  • Опубліковано 28 лис 2024

КОМЕНТАРІ • 116

  • @owen7185
    @owen7185 Рік тому +19

    Prof Strang has inspired me to be as good as possible in everything I want to achieve

  • @hannslunninger416
    @hannslunninger416 2 роки тому +11

    Diese Videos zeigen eindrucksvoll, was einen guten Lehrer ausmacht: 1. Fachkompetenz 2. Fachkompetenz 3. Fachkompetenz 4. die Liebe zum Fach und das Bedürfnis, dieses Wissen - und vor allem worauf es ankommt - weiterzugeben. Die Methode dazu ergibt sich unter diesen Voraussetzungen ganz natürlich von selbst. Great praise and many thanks!

  • @SebastianLopez-nh1rr
    @SebastianLopez-nh1rr 8 років тому +287

    The quotient rule: "Who can remember that?!"
    It made me laugh hahaha

    • @박형주-f5g
      @박형주-f5g 8 років тому +6

      korean high school students: we remember it damn it!!

    • @Alberpinypon
      @Alberpinypon 8 років тому +1

      It is just a joke man! Take it easy

    • @thomasr.7579
      @thomasr.7579 8 років тому

      Sebastián López composite function..

    • @Skrzelik
      @Skrzelik 7 років тому +18

      "low d high minus high d low
      square the bottom and a way we go"
      I think you can remember that :)
      (Yes I know I'm answering after almost a year)

    • @f.easulin3091
      @f.easulin3091 7 років тому +3

      after 10 years,
      can remeber,
      my teacher thought it would be funny to sing it..

  • @kingsnowy3037
    @kingsnowy3037 4 роки тому +26

    "That's called the Taylor series. Named after Taylor."
    I love this.

  • @qzorn4440
    @qzorn4440 8 років тому +16

    this is the real Dr. Who can teach Calculus. thanks.

  • @astropgn
    @astropgn 5 років тому +16

    I never had a good understanding of the Taylor series. For me it was kind of magic. I probably missed the lecture when my professor gave it to me, but I am inclined to say that actually I was there but the class wasn't that good, unfortunately. His small description of what the taylor series is was so useful I am now wanting to learn about it by myself just because it made so much sense

    • @smedleybelkin19
      @smedleybelkin19 4 місяці тому

      Our first year lecturer showed us it and then moved right on saying it’s obvious to you all… it wasn’t.

  • @Os_Bosniak
    @Os_Bosniak 8 років тому +13

    Dear mister Strang it is a great pleasure watch this video series. You are enlighten this hard and very non intuitive stuff. Thank You a very, very much. Great greeting from Bihac, and i wish to You only best wishes.

  • @sravanvurlugonda2871
    @sravanvurlugonda2871 3 роки тому +1

    just listening lecture and out of the blue comes " this is taylors series" shocked and amazed to know the essence and meaning of taylors series. all these days taylors series i just use to mug up. Thanks a lot Mr.Gilbert strang🙏🙏🙏🙏🙏

  • @loden5677
    @loden5677 2 роки тому +3

    I really love this lecturer he has such an effective and refreshingly succinct way of delivering the content!!

  • @CatsBirds2010
    @CatsBirds2010 7 років тому +2

    I am so very thankful to this guy that can't express with words.

  • @TheFrygar
    @TheFrygar 5 років тому +5

    Strang is truly a legend among mere mortals

  • @bd_harold7752
    @bd_harold7752 Рік тому

    He is one of the best professor.

  • @JawharBacha
    @JawharBacha 8 років тому +16

    Dr Gilbert Strang is just my saver as always ! Thank you very much

  • @JohnnyYenn
    @JohnnyYenn 8 років тому +18

    The sound errors are absolutely driving me nuts! :(

  • @UnforsakenXII
    @UnforsakenXII 8 років тому +82

    Is it me or is there a little bit of sound errors?

    • @thebigVLOG
      @thebigVLOG 8 років тому +13

      +Andres It's definitely you, Strang doesn't make mistakes.

    • @UnforsakenXII
      @UnforsakenXII 8 років тому +7

      I meant like the audio. I think it was my headphones. Lol.

    • @thebigVLOG
      @thebigVLOG 8 років тому +13

      The muffled sounds is there on purpose, Strang was just testing his students.
      BTW, I've been joking :p

    • @SilverArro
      @SilverArro 8 років тому +8

      +Andres It's not just you. There are several sound skips.

    • @loganborghi5727
      @loganborghi5727 8 років тому

      i swear, you are watching this video too? lol

  • @mrblini
    @mrblini 6 років тому +1

    This guy is a true professor

  • @bunkydunk7500
    @bunkydunk7500 Рік тому +1

    So good I need to watch them again and take notes. I am truly inspired by his excellent explanations.

  • @moehassan_
    @moehassan_ 3 місяці тому

    3:15 "I''ll change that dummy variable to t. Whatever. I don't care"
    I love this guy

  • @randallyoung6715
    @randallyoung6715 7 місяців тому

    This guy was (and is) a star.

  • @Sinusis
    @Sinusis 8 років тому +16

    Thank you for this beautiful enlightening lecture.

  • @AndreOliveira-ol3cy
    @AndreOliveira-ol3cy 5 років тому +7

    Oh man, I'm in love with these classes. Dr. Strang, I hope someday I'll be just as half as good as you as a professor. I'll then know that am an awesome teacher! Thank you very much!

    • @kingsnowy3037
      @kingsnowy3037 4 роки тому +1

      Holup now. Dr. Strang? I can't believe I've never thought of his name with his honorific. That's funny.
      Dr. Strang. Sorcerer Supreme.

  • @MisterBinx
    @MisterBinx 5 років тому +4

    I got a C in diff eq but I want to have a deeper understanding. I hope these videos help.

  • @Le_Parrikar
    @Le_Parrikar 6 років тому +1

    wow. This provided a completely new perspective for me.

  • @bobnash79
    @bobnash79 8 років тому +2

    Thanks for sharing this video...lots of sleeping connections in my brain started sparkling again :-)I like very much the visualisation of the taylor serie . Very clear!

  • @Fr3Eze1992
    @Fr3Eze1992 8 років тому +3

    holy shit that equation at 7:50 blew my mind

  • @HH-wh1kh
    @HH-wh1kh 5 років тому

    BEST MATH TEACHER !!!

  • @nicholasesposito1212
    @nicholasesposito1212 3 роки тому

    The calculus you deserve. But not the calculus you need right now

  • @Alberpinypon
    @Alberpinypon 8 років тому +6

    Can anyone clarify why he took e^t out of the integral? Isn't it required to be a constant for being taken off an integral?

    • @VidsAccount123
      @VidsAccount123 8 років тому +6

      e^t-s can be rewritten as (e^t)/(e^s) because of the quotient rule of exponents. Therefore the e^t can be take out as a constant, and he left e^-s for simplicity instead of writing 1/(e^s)

    • @TheCesarcastro
      @TheCesarcastro 8 років тому +17

      He took e^t out of the integral because the variable in which you are integrating is "s" not "t", so you can consider "t" or any function of "t" as a constant, so you can take it out of the integral.

    • @Alberpinypon
      @Alberpinypon 8 років тому

      Lol, so true, thanks for the feedback guys!

  • @alexeisirotinin3590
    @alexeisirotinin3590 6 років тому

    Thank you, Mr. Strang.

  • @elamvaluthis7268
    @elamvaluthis7268 3 роки тому

    How great and how nice explanation?

  • @guliyevshahriyar
    @guliyevshahriyar Рік тому

    Thanks so much, professor!

  • @BuddyNovinski
    @BuddyNovinski 7 років тому +1

    When I took differential equations at Penn State back in 1976, this is how the professor should have introduced them, along with the suggestion to practice the equations as much as possible!

  • @ankanbiswas2854
    @ankanbiswas2854 7 років тому +2

    @7:20 shouldn't it be e^(-t)[ e^(-t).g(t) - e^0.g(0)]? is it just convinient to ignore e^0.g(0) because it is convinient here?

    • @user_golden
      @user_golden Рік тому

      No, it is not correct the way you write it. There is no e^0.g(0) term there.

  • @timdong2147
    @timdong2147 5 років тому

    At 7:50, why did he substitute s with t, giving e^t. Shouldn’t it be e^s? What about e^0?

  • @ГеройАлександрНевский

    ❤️❤️❤️❤️❤️ Differential equations. Thanks Doctor ...

  • @rafaelsouza4575
    @rafaelsouza4575 6 місяців тому

    where do the denominators from the Taylor series terms come from?

  • @andrewlee7307
    @andrewlee7307 8 років тому

    Great course, never view differential equations that way!

  • @thewanted5869
    @thewanted5869 2 місяці тому

    Can anyone explain why f(t+▲t)-f(t) =▲f? at 9:48

  • @asdfafafdasfasdfs
    @asdfafafdasfasdfs Рік тому

    7:33 shouldn't the first term be y(t)?

  • @abidalrk4432
    @abidalrk4432 7 років тому

    there is one thing that bothered me abt taylor series , isn't the t+∆t should be t'+∆t and ∆t=t-t' (with t' a real number) , cause when want define Taylor series for a function , we do it in a neighberhood of a point t' , any way the notations that i wrote seems more logical than the other , am i right ?

  • @companymen42
    @companymen42 Рік тому +7

    Ow my ears. MIT please fix your audio

  • @is-ig4zh
    @is-ig4zh 4 роки тому +1

    This is my first time seeing big chalk.

  • @sergiohuaman6084
    @sergiohuaman6084 4 роки тому +1

    Dr. Strang is the Chuck Norris of Mathematics.

  • @Fabsurf101
    @Fabsurf101 3 роки тому +1

    Great prof!

  • @lavieestlenfer
    @lavieestlenfer 7 років тому +3

    Why do the s terms become t terms?

    • @robertw2930
      @robertw2930 7 років тому

      Does it have to do with speed or time or just t for taylor?

    • @guilhermesilva3415
      @guilhermesilva3415 7 років тому +1

      that's what the fundamental theorem of calculus says(you might wanna check it out), if you're taking de derivative of an integral ( integral of "e" to the "t") evaluated from 0 to "x", then the derivative is what is "inside" the integral evaluated in "X". "e^x". fundamental theorem of calculus.

  • @rainuriftiannehziraelwance9582
    @rainuriftiannehziraelwance9582 5 років тому

    the Calculus you need e - x insteresting what informations different equastion not everythings all detail.

  • @DosVulcanianos
    @DosVulcanianos 4 роки тому

    Amazing, but I didn´t undernstand why dissapiar the g(s) and it became in g(t). I beleave that is related with the intregral from 0 to t, but can anyone give any clue? thank a lot

  • @tiagozibecchi3634
    @tiagozibecchi3634 Рік тому

    EXCELLENT

  • @sureshkumarsahu5010
    @sureshkumarsahu5010 5 років тому

    Thanx professor strang

  • @GrimKage
    @GrimKage 2 роки тому

    7:15 why did the s turn in to t when you derived the integral??

    • @Adithyaflute
      @Adithyaflute 2 роки тому +1

      limits applied. so it turned into t

  • @verofalcon8443
    @verofalcon8443 4 роки тому

    Conciso, claro.

  • @ahmedismail1018
    @ahmedismail1018 8 років тому +1

    i love u MIT

  • @ichoine
    @ichoine 8 років тому

    Love the way you explain things :))

  • @Sahilbc-wj8qk
    @Sahilbc-wj8qk 6 років тому

    Amazing finely last point get a real thing for me.

  • @carlostonchee3393
    @carlostonchee3393 8 років тому

    Why are you using the Laplace transform of the function instead of the time domain function?

    • @kvlpnd
      @kvlpnd 8 років тому +1

      because after transferring to s domain, calculations become very easy.

    • @kvlpnd
      @kvlpnd 8 років тому

      also we can use as many domains on a single equation but can't really process them simultaneously. That's why he put the terms instead of processing.

    • @carlostonchee3393
      @carlostonchee3393 8 років тому +1

      Ohh thanks Keval Pandya​

  • @AliVeli-gr4fb
    @AliVeli-gr4fb 7 років тому

    I thank you, sir

  • @Priapos93
    @Priapos93 3 роки тому

    Timeless

  • @hrperformance
    @hrperformance Рік тому

    7:40 why are we treating q(s) as a function of t?

    • @hywelgriffiths5747
      @hywelgriffiths5747 Рік тому +1

      It's what he says on the previous board (3:00) when talking about the fundamental theorem: inside the integral we use a dummy variable that can be anything - the actual variable that the integral is a function of appears in the limit (the x at the top of the integral sign).

    • @hrperformance
      @hrperformance Рік тому

      @@hywelgriffiths5747 thank you 👍🏼

  • @azamatdevonaev1772
    @azamatdevonaev1772 4 роки тому

    I wonder what to say or not to say if I find those guys that disliked the video...

  • @bilalabbad7954
    @bilalabbad7954 2 роки тому

    Thank lot

  • @FernandoVinny
    @FernandoVinny 7 років тому +2

    7:15 isn't exp(-s)q(s) ???

  • @dalyd12
    @dalyd12 7 років тому

    This is great

  • @zeeshan3dge
    @zeeshan3dge 8 років тому

    great...

  • @joeewert4503
    @joeewert4503 3 роки тому

    No sound errors on 1.25 speed :) Maybe the ML speedup algorithm filters out the noise. EDIT nvm it only did it with the first scratch.

  • @devsaranga
    @devsaranga 6 років тому

    13 people don't have the Calculus needed.

  • @MaterJediAnakinSkywalker
    @MaterJediAnakinSkywalker Рік тому

    he is blinking me

  • @kvlpnd
    @kvlpnd 8 років тому

    oh my poor internet speed. :(

  • @mikej3555
    @mikej3555 Рік тому

    3:42

  • @muhammadfaizanalibutt4602
    @muhammadfaizanalibutt4602 4 місяці тому

    taylor swift series

  • @Lampeaoo
    @Lampeaoo 8 років тому +1

    Man, I was watching differencial equations and the video came later was that... that is way before than DE.
    It would be perfect if the video was being put in the right order :(

  • @samb443
    @samb443 8 років тому +1

    Low d high - high d low over low low ez

    • @FingerThatO
      @FingerThatO 8 років тому

      Sam M your mom is easier.

  • @FiveEars
    @FiveEars 4 роки тому +1

    sounds terrible - what a waste of good content